
�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:56 1

DECORATOR (DP 175) Object Structural

Intent

Attach additional responsibilities to an object dynamically. Decorators provide a flexible
alternative to subclassing for extending functionality.

Structure

Discussion

A class implemented as a Decorator does not provide core functionality itself. Instead,
Decorator instances enhance the core functionality of the objects they decorate. A Deco-
rator and the object it decorates (its Component) are of the same broad supertype, which
is to say that they have the same core interface. Because the classes are polymorphic, the
difference between a component and a decorated component is transparent to the client.

The way to recognize a Decorator class is that it has a single instance variable whose
type is the same as the Decorator’s. The Decorator delegates its implementation to this
instance variable, but in the process it implements some of the messages to add extra
behavior in addition to (or instead of) the straight delegation.

The name “decorator” seems to imply that this pattern can only be used with visuals,
such as wrapping scrollbars around a text view, but the pattern is actually more versa-
tile. It can be used to add functionality to any kind of object, not just a visual.

Systems Pattern

Decorator is a common pattern, but a fairly systems-oriented one, meaning that it is
commonly used for implementing basic systems frameworks like windowing systems,

component

Component

operation

ConcreteComponent Decorator

ConcreteDecoratorA

operation operation

operation component−>Operation()self component operation

addedBehavior

super operation.
self addedBehavior

ConcreteDecoratorB

addedState

operation

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

2 04/23/97 08:56

streams, and fonts. However, it is fairly uncommon for modeling domains, so most
Smalltalk applications developers do not use it very often. Furthermore, VisualWorks
uses Decorator to implement its base frameworks far more heavily than the other dia-
lects do, so most Smalltalk examples are from VisualWorks. We will discuss one do-
main example, insurance caps, but first let’s look at how Decorator works in general.

Wrapper Hierarchy

The Wrapper hierarchy in VisualWorks is a classic example of the Decorator pattern.
VisualWorks implements graphical user interfaces using the Model-View-Controller
(MVC) framework discussed in Design Patterns (pages 4-6) and in Factory Method. In
Model-View-Controller, the Model contains the state that can be displayed, the View
displays the state, and the Controller handles input that manipulates the state. The
Model-View-Controller framework embodies several design patterns, including Ob-
server, Composite, and Strategy, as well as Decorator.

The View in Model-View-Controller triad is implemented as the VisualComponent
hierarchy; its main classes are shown below. VisualComponent ’s main subhierarchy
is VisualPart . VisualPart has leaf subclasses such as DependentPart and
SimpleComponent , composition subclasses like CompositePart (an example of
the Composite pattern), and Decorator subclasses like Wrapper .

Wrapper itself does nothing except define the Decorator pattern. It has an instance
variable called component that is a VisualComponent . Right away you know that
something unusual is going on because Wrapper is a subclass of VisualComponent
and yet its instance variable is also a VisualComponent . This forms a recursive
structure of VisualComponent s (Wrapper s) whose components are in turn
VisualComponent s. Wrapper subimplements various key messages from
VisualPart and VisualComponent , but its implementation of those messages
does little more than forward the same message to its component. That’s all Wrapper

WrapperCompositePart SimpleComponentDependentPart

component

VisualComponent

VisualPart

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:56 3

does. Thus a visual wrapped with a Wrapper behaves no differently than it would
without the wrapper.

This lack of real behavior is typical for the top class in a Decorator hierarchy. The class
will do little more than define an instance variable and override key messages to forward
them to the instance variable. Decorator subclasses are implemented as typical sub-
classes—they subimplement their superclass to change its behavior. In the case of a
Decorator subclass, it takes the top class’ generic decoration behavior that does nothing
and changes it to add specific decoration behavior. You see this in all Decorator hierar-
chies, not just Wrapper .

Once Wrapper has defined the Decorator pattern, its subclasses have a tremendous
amount of freedom to affect the behavior of both the view and the controller. All the
subclass has to do is change the implementation of the key messages it wishes to affect.
It can choose from any of the messages that Wrapper forwards to its component. For
example, a BoundedWrapper sets the bounds of its visual—the screen space allotted
for it. By wrapping a visual with a BoundedWrapper , the visual’s bounds become ir-
relevant because the wrapper sets the bounds. When a client asks the component what
it’s bounds are, the wrapper intercepts the message and returns its own bounds instead
of its visual’s. This message interaction is shown in the diagram below. In this way, you
can control any VisualComponent ’s bounds just by wrapping a BoundedWrapper
around it.

There are other common uses for Wrapper subclasses. ReversingWrapper
switches the foreground and background colors when drawing a visual to highlight it.
GraphicsAttributeWrapper sets the graphics attributes of its visual such as its
color and line width. PassivityWrapper can be toggled between enabled and dis-
abled mode. When it’s enabled, it forwards messages unaffected. But when it’s disabled,

component

aClient

component

aBoundedWrapper
aTextView

aTextViewaBoundedWrapperaClient

bounds

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

4 04/23/97 08:56

it makes its visual look disabled by drawing it grayed-out, and makes the visual act dis-
abled by blocking all controller messages. Thus simply by introducing Wrapper as a
Decorator class, it is now possible to control all kinds of properties of a visual simply by
subclassing Wrapper .

Nested Decorators

A single Component often has multiple Decorators nested on it. For example, to add
scrolling to a visual, VisualWorks wraps a ScrollWrapper around it. However, it
usually also wraps a BorderedWrapper around the ScrollWrapper .
BorderedWrapper is a subclass of BoundedWrapper that sets a visual’s bounds
and draws a border to outline those bounds. Wrapping a BorderedWrapper around a
ScrollWrapper sets the bounds of the scrollable area and displays those bounds
visually. The order of the Decorators is important. If the ScrollWrapper wrapped
the BorderedWrapper , it would try to scroll the bounded rectangle; that would not
work very well.

Combination Component/ConcreteComponent Class

Smalltalk implementations of the Decorator pattern often combine the Component and
ConcreteComponent classes into a single class called Component as shown below. For
example, in the VisualComponent hierarchy in VisualWorks, VisualPart plays
the role of both the Component class and the ConcreteComponent class.

Combining Component and ConcreteComponent together into one class can cause
problems. You can no longer introduce new behavior just for the ConcreteComponent
classes without also introducing it into the Decorator classes as well. For example, in the
VisualComponent hierarchy, to introduce behavior into all of the Concrete-
Component classes like DependentPart and SimpleComponent , you would want
to add the behavior to VisualPart . But by adding the new behavior there, it will be
inherited by non-ConcreteComponent classes like CompositePart and Wrapper .

However, often the ConcreteComponent class is empty because it doesn’t have any sepa-
rate behavior from the Component class. When this happens, ConcreteComponent is
usually merged into Component to avoid implementing an empty subclass.

component

operation component−>Operation()self component operation

Component

Decorator

operation

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:56 5

Decorator is a Subclass

One confusing aspect of the Decorator pattern is that the Decorator class is a subclass of
the abstract Component class that it decorates. This is counterintuitive because a Deco-
rator instance is a parent of the component it decorates. For example, the following dia-
gram shows a typical tree structure with Decorators on the Components. Each Decorator
is a parent of its Component; the component is the decorator’s child. It then seems obvi-
ous to make the Component class a subclass of the Decorator class. Yet the Component
class defines the interface that the Decorator class must fulfill, so the Component class is
the superclass of the Decorator class.

No Decorator Subclass

A strongly typed language like C++ virtually requires that the Decorator pattern be im-
plemented as a separate Decorator subhierarchy in the Component hierarchy. Smalltalk
does not force this constraint. For example, the ValueModel hierarchy in Visual-
Works contains three Decorator classes: BufferedValueHolder , RangeAdaptor ,
and TypeConverter . Most ValueModel classes are Adapters on a subject where
the subject can usually be any kind of Object , but these three ValueModel classes
are Decorators because they expect their subjects to be other ValueModel s. As this
diagram shows, the ValueModel Decorator classes are completely unrelated to each
other in the hierarchy, yet they still work as Decorators.

component

aDecorator

component

aDecorator

components

aComposite

aComponent aComponent

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

6 04/23/97 08:56

However, even though Smalltalk does not require it, multiple Decorator classes in the
same hierarchy should have a common Decorator superclass. Otherwise, each Concrete-
Decorator class has to define its own Decorator behavior. For example, none of the sub-
classes in the Wrapper hierarchy have to define their Decorator behavior because they
inherit that from their superclass, Wrapper . All a subclass has to do is define how it
wants to decorate the visual. To the contrary, the three ValueModel Decorator classes
duplicate behavior that would only have to be implemented once if they were subclasses
of a common ValueModelDecorator superclass.

Another shortcoming of not having a common Decorator class is the difficulty in recog-
nizing that the classes follow the Decorator pattern. For example, Buffered-
ValueHolder looks like a ValueHolder with a buffer. This actually looks like an
anti-example of the Decorator pattern, where subclassing was used instead of a Decora-
tor. However, even though BufferedValueHolder is implemented as a subclass of
ValueHolder , it does not have a ValueHolder built into it. Instead, it expects its
subject to be a ValueModel —any kind of ValueModel —including a
ValueHolder . So a BufferedValueHolder can be used to add a buffer to any
ValueModel . That would be a lot more obvious if it were called “BufferedValue-
Model” and were a subclass in a Decorator branch instead of a subclass of a Concrete-
Component.

The following diagram shows a hypothetical ValueModel hierarchy that implements
the Decorator pattern better. It introduces a ValueModelDecorator class to imple-
ment the Decorator pattern and makes BufferedValueHolder , RangeAdaptor ,
and TypeConverter its subclasses. Notice that it combines the Component and
ConcreteComponent classes together as ValueModel .

BufferedValueHolder

ValueHolder

ValueModel

RangeAdaptorPluggableAdaptor

TypeConverter

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:56 7

ValueModel Decorators provide another example of the power of nesting
ValueModel s. If a ValueModel needs a buffer, you wrap it with a Buffered-
ValueModel . If it needs its type converted, you wrap it with a TypeConverter .
Better still, to both buffer a value and change its type, you would use a Buffered-
ValueHolder and a TypeConverter . Order is not as important in this case, but it
is still significant. If the BufferedValueHolder decorates the TypeConverter ,
the converted value is buffered. The other way around, the unconverted value is buff-
ered.

Decorator’s Core Interface

The Component class must define the core interface that the Decorator and
ConcreteComponent subclasses implement. For more information about what a core in-
terface is and how to implement one, see Composite.

As with Composite, subclasses in a Decorator structure should avoid extending their
Component’s interface. The extended interface will contain more messages that the
Component’s interface such that a client will have to first determine the type of the re-
ceiver before it can safely use the extended interface.

Insurance Caps

Having said that Decorator is rarely used in modeling domains, here is a domain exam-
ple. Decorator can be used in the insurance domain to cap the payments made to a poli-
cyholder for a claim. A health insurance policy would reimburse various medical proce-
dures at various rates. However, the policy as a whole may have a maximum amount it
will pay for a single claim. If all holders of this policy have the same cap, it can be built
into the policy. But if various policyholders have the same policy but different caps, or if
the cap is very difficult to build into the policy, the cap can be implemented as a Deco-
rator on the policy.

ValueModel

BufferedValueHolder

ValueHolderValueModelDecoratorPluggableAdaptor

RangeAdaptor TypeConverter

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

8 04/23/97 08:56

Policy will have a method like reimbursementForClaim: that processes the
claim and computes the reimbursement amount. Because different policyholders have
different caps, this method will ignore all caps based on policyholder. Thus the reim-
bursement amount may be above the cap for some policyholders. To prevent this, each
Policyholder does not hold a Policy directly, it holds a PolicyCap that holds
the Policy . The cap also implements reimbursementForClaim: ; it gets the re-
imbursement amount from the Policy, then tests it against the cap and returns whichever
is less.

Here’s some very brief example code for this hypothetical example. First you need to de-
clare the Component class, the abstract superclass that declares the interface for both the
ConcreteComponent and the Decorator. We’ll call this Component AbstractPolicy
and declare the main message we’re interested in, reimbursementForClaim: .

Object subclass: #AbstractPolicy
instanceVariables: ''
classVariables: ''
poolVariables: ''

AbstractPolicy>>reimbursementForClaim: aClaim
"Calculate how much money the policy will pay
for aClaim and return that amount."
^self subclassResponsibility

Next we’ll implement the ConcreteComponent class, Policy . It’s the easy one to im-
plement because it just acts the way a policy does. We won’t show the code for
reimbursementForClaim: because it can get rather complex and really has noth-
ing to do with the Decorator pattern.

AbstractPolicy subclass: #Policy
instanceVariables: '...'
classVariables: ''
poolVariables: ''

Policy>>reimbursementForClaim: aClaim
"... code to calculate the reimbursement ..."

Finally, we’ll implement the Decorator class, PolicyCap . Because it is a Decorator, it
needs an instance variable to point to its Component. We’ll call it policy . It also
needs an instance variable to hold the amount of the reimbursement cap.

AbstractPolicy subclass: #PolicyCap
instanceVariables: 'policy capAmount'
classVariables: ''
poolVariables: ''

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:56 9

The PolicyCap calculates the reimbursement amount in two steps. First, it asks its
policy how much the reimbursement should be. Second, it returns either that amount
or the cap, whichever is less.

PolicyCap>>reimbursementForClaim: aClaim
| uncappedAmount cappedAmount |
uncappedAmount := self policy reimbursementForClaim:

aClaim.
cappedAmount := uncappedAmount min: self capAmount.
^cappedAmount

Other insurance functions could also be implemented as Decorators. For example,
PolicyDeductable could be another Decorator that subtracts the policyholder’s de-
ductibles and copayments out of the reimbursement amount.

Stream Decorators

The Known Uses section of the Decorator pattern in Design Patterns discusses a
StreamDecorator class (page 183). StreamDecorator has subclasses for com-
pressing an ASCII stream and for converting 8-bit ASCII into 7-bit ASCII.

Smalltalk developers have discovered another use for Stream decorators. Streams are
typically used to store characters and bytes, because that’s what flat files hold. Yet
Smalltalk stores complex objects, not just characters and bytes. How can those objects be
stored in files?

VisualWorks provides a framework called BOSS (the Binary Object Streaming Service)
for storing objects in files. The BOSSTransporter hierarchy is a set of stream-like
classes for reading and writing objects. One subclass, BOSSReader, implements the
next protocol; the other, BOSSWriter , implements the nextPut: protocol. Both
use an instance variable called stream , either a ReadStream or a WriteStream ,
to implement their behavior. For example, BOSSWriter converts each object into a
BOSSBytes—a special ByteArray —and then uses the WriteStream to write
those bytes into a file.

BOSSTransporter is another example that a Decorator class does not have to be im-
plemented in the same hierarchy as its Component classes. Both Stream and
BOSSTransporter are subclasses of Object ; that’s all they have in common. This
would not work very well in C++ because of it’s strong typing: the client would have to
know whether it was using a Stream or a BOSSTransporter . It could not switch
between the two interchangeably because they’re not in a single Component hierarchy.
Java might be able to handle this if it declared a “streaming” interface and declared both
Stream and BOSSTransporter to fulfill it. (Bridge discusses Java interfaces.)

Just because Smalltalk can handle Decorators and Components in completely separate
hierarchies does not mean implementing Decorators this way is a good idea. By imple-

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

10 04/23/97 08:56

menting them in the same hierarchy, you’re assuring that they will support the same in-
terface so that they can be used interchangeably. This allows the client to ignore the de-
tails of whether it’s using a Component or a Decorator on a Component. When the hier-
archy is split in two like this, both hierarchies must be maintained to keep their inter-
faces polymorphic. It is always better to avoid duel maintenance when possible.

The File Reader framework (Woolf, 1996) contains a better example of a stream deco-
rator. It implements FormattedStream as a subclass of Stream . As a Stream ,
FormattedStream implements the usual messages like next , nextPut: , and
atEnd . Its main instance variable is dataStream , an instance of Stream .
FormattedStream implements nextPut: to accept an object and uses a
StreamFormatDescription to convert the object into a record. It then uses the
dataStream to write that record into a file. FormattedStream>>next reverses
the process to read a record out of a file and convert it back into an object. Because the
dataStream can be any type of Stream , the “file” can be any object that can be
streamed across.

Missed Opportunities

For every good opportunity where the Decorator pattern is used, there seems to be an-
other where it might have been used but wasn’t. The key to the Decorator pattern is that
it is a flexible alternative to subclassing. Rather than adding behavior to a class by cre-
ating a subclass of it, we can add the behavior by creating a Decorator for it. Then that
Decorator can be used to decorate any other class of the same type. Plus, Decorators can
be nested, so rather than having to choose between a subclass or its peer, you can deco-
rate with both.

There are numerous hierarchies that seem like they could benefit from a more flexible
alternative than subclassing. For example, in the VisualWorks Stream hierarchy,
ExternalReadStream has a subclass called CodeReaderStream and
ExternalWriteStream has a subclass called CodeWriterStream . The follow-
ing diagram shows these classes. Although their protocols are counterparts of each
other, such reciprocal behavior is often encapsulated into a single class. But if there
were a single CodeStream class, how could it be used with both ExternalRead-
Stream s and ExternalWriteStream s? It should be implemented as a Stream
Decorator, much like those in ET++ (DP 183).

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:56 11

For that matter, the orthogonal differentiation in the Stream hierarchy between
read/write behavior and internal/external implementation is a subclassing nightmare.
First the hierarchy splits into internal and external subhierarchies, then the subhierar-
chies duplicate the implementation for behaviors like read, write, append, and combina-
tions thereof. Perhaps if read, write, and append were implemented as Decorators, they
could be wrapped around internal and external streams in any combination desired.

Here’s another example. ApplicationModel in VisualWorks has several abstract
subclasses that add helpful behavior: SimpleDialog creates modal windows;
LensApplicationModel interfaces with the Object Lens framework; third-party
vendors have added their own abstract subclasses like ValueInterface (Abell,
1995). The problem is, what if you want a modal window that is Lens enabled? Do you
subclass SimpleDialog or LensApplicationModel ? If these classes were im-
plemented as ApplicationModel Decorators, you could easily use both. A regular
window would be declared as a subclass of ApplicationModel . If an instance of the
window needed to be modal, wrap it with a SimpleDialog Decorator. If another in-
stance needs to gather its data using the Lens, wrap it with a LensApplication-
Model Decorator. If you need both, nest the two Decorators.

The Collection hierarchy is another example of inflexible subclassing that might
benefit from the Decorator pattern. There are four basic ways to store a collection: as an
array (Array , OrderedCollection), a linked list (LinkedList and Link in
VisualWorks), a hash table (Set), or a (balanced binary) tree. Various Collection
classes enhance these basic storage structures: duplicate elimination (Set), sorting
(SortedCollection), and dependency notification (List in VisualWorks). The
problem comes when you need a collection to preserve order but eliminate duplicates.
You’ll probably implement OrderedSet as a subclass of OrderedCollection .

ExternalStream

BufferedExternalStream

ExternalReadStream ExternalWriteStream

CodeWriterStreamCodeReaderStream ExternalReadWriteStream

ExternalReadAppendStream

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

12 04/23/97 08:56

But then if you also need a collection that sorts into order while removing duplicates,
you’ll also need to implement SortedSet as a subclass of SortedCollection .
The code in OrderedSet and SortedSet will be very similar; the main difference
will be their superclasses.

A more flexible solution would be to divide the Collection hierarchy into Concrete-
Component and Decorator branches. ConcreteComponent classes would implement ar-
ray, linked list, hash table, and perhaps tree. Decorator would implement duplicate
elimination, sorting, and dependency notification. Then an “ordered set” would be an
array with a duplicate elimination decorator. A “sorted set” would be an array with a
duplicate elimination decorator on a sorting decorator. (In fact, an Ordered-
Collection might become an Array that is wrapped with a “growable collection”
decorator.) This would be much more flexible than the subclassing the current
Collection hierarchy uses, although perhaps less efficient. (See Bridge for IBM’s
approach to implementing collections.)

Implementation

There are several issues you should consider when implementing a Decorator:

1. Use a Decorator superclass. As noted earlier, Decorator classes do not have to be
implemented in the same hierarchy as their Component classes. Even when they
are, they do not have to be unified with a common Decorator superclass. However,
you should always implement the Decorator pattern hierarchy as shown in the
Structure diagram: a decoration-defining Decorator class at the top that is a subclass
of the Component class.

 This obviously makes the decorator classes easier to implement. But it also makes
your use of the Decoration pattern more obvious and easier to understand by anyone
reviewing or maintaining your code. Again, look at the ValueModel Decorator
classes scattered throughout the ValueModel hierarchy; do those look like Deco-
rators? The BOSSTransporter hierarchy is completely separate from the
Stream hierarchy; does it look like a Stream Decorator? The Decorator subclass
of Component not only makes the pattern easier to implement, it makes the pattern
easier to recognize and maintain.

2. Consider a ConcreteComponent subclass. Consider implementing a separate
ConcreteComponent subclass of the Component class. This will divide the Compo-
nent hierarchy into two distinct subhierarchies: Decorator—classes that can deco-
rate; and ConcreteComponent—classes that can be decorated.

3. Only Decorator delegates. The only decorator class that should delegate to its com-
ponent is the top class in the Decorator subhierarchy. All Decorator subclasses
should defer their default behavior to their Decorator superclass and let it handle the
delegation.

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:56 13

4. Don’t assume component is concrete. Do not assume that a Decorator subclass will
delegate directly to a ConcreteComponent. Since decorators can be nested, it may be
delegating to another Decorator.

5. Three ways to forward. There are three ways for the Decorator to forward its opera-
tion messages to its component:

• Simple forward — Send the message to the component without performing any
other behavior.

• Extended forward — Perform extra behavior before and/or after forwarding the
message to the component.

• Override — Perform behavior instead of forwarding the message to the compo-
nent; this behavior may be to do nothing.

Sample Code

As discussed earlier, The File Reader (Woolf 1997) contains a Stream Decorator class
called FormattedStream . The File Reader’s main hierarchy, FieldFormat-
Description , also contains a textbook example of the Decorator pattern.

A FieldFormatDescription codifies how a field should be read from a file. It
knows whether the field is delimited or fixed-length, what the delimiter or length is, etc.
The main things a description knows how to do is read and write the field. Its three sub-
classes are LeafFieldFormat , CompositeFieldFormat (an example of the
Composite pattern), and FieldFormatDecorator . This diagram shows the hierar-
chy.

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

14 04/23/97 08:56

Let’s look at how it’s implemented. The superclass, FieldFormatDescription ,
declares the core interface for the entire hierarchy. It fulfills the role of the Component
class. As an abstract class, it introduces basic messages like readObjectFrom:-
into: and adaptorForIndex:andSubjectChannel: .

Object subclass: #FieldFormatDescription
instanceVariables: ''
classVariables: ''
poolVariables: ''

FieldFormatDescription>>readObjectFrom: dataStream into:
aValueModel

self subclassResponsibility

FieldFormatDescription>>adaptorForIndex: anInteger
andSubjectChannel: aValueModel

^(IndexedAdaptor subjectChannel: aValueModel)
forIndex: anInteger

FieldFormatDecorator is a subclass of FieldFormatDescription that im-
plements the Decorator class. It has an instance variable called “fieldFormat” that acts
as the pointer to the Decorator’s component. It implements the core Field-
FormatDescription messages to delegate them to its fieldFormat .

FieldFormatDescription subclass: #FieldFormatDecorator
instanceVariables: 'fieldFormat'
classVariables: ''
poolVariables: ''

fieldFormat

FieldFormatD escription

readObjectFrom:into:

adaptorForIndex:...

FieldFormatDecorator

readObjectFrom:into:

adaptorForIndex:...

CompositeFieldFormat

readObjectFrom:into:

IgnoreFieldFormat

adaptorForIndex:...

AspectFieldFormat

adaptorForIndex:...

RecordFieldFormat

LeafFieldFormat

readObjectFrom:into:

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:56 15

FieldFormatDecorator>>readObjectFrom: dataStream into:
aValueModel

fieldFormat
readObjectFrom: dataStream
into: aValueModel

FieldFormatDecorator>>adaptorForIndex: anInteger
andSubjectChannel: aValueModel

^fieldFormat
adaptorForIndex: anInteger
andSubjectChannel: aValueModel

There are many helpful behaviors that can be added to a field description in the process
of reading and writing a field, and the hierarchy implements those behaviors as decora-
tors. RecordFieldFormat enhances a description (usually a Composite-
FieldFormat) to expect a record delimiter at the end. It does this by overriding
readObjectFrom:into: to read the record into a separate stream and read the
field(s) from it. Notice that it does not delegate to its fieldFormat directly; it lets its
superclass do that via super>>readObjectFrom:into: .

RecordFieldFormat>>readObjectFrom: dataStream into:
aValueModel

| recordStream |
recordStream :=

(dataStream upTo: recordDelimiter) readStream.
super readObjectFrom: recordStream into: aValueModel

AspectFieldFormat maps the field to a domain object’s aspect. IgnoreField-
Format maps a field’s value to the bit bucket. They both do this by overriding
adaptorForIndex:andSubjectChannel: . By default, the framework reads a
record into an Array and uses IndexedAdaptor s (a kind of ValueModel) to map
field values into array slots. This default is implemented in FieldFormat-
Description>>adaptorForIndex:andSubjectChannel: (shown above).
AspectFieldFormat overrides this to use an AspectAdaptor ; Ignore-
FieldFormat uses a ValueHolder .

AspectFieldFormat>>adaptorForIndex: anInteger
andSubjectChannel: aValueModel

^(AspectAdaptor subjectChannel: aValueModel)
forAspect: aspect

IgnoreFieldFormat>>adaptorForIndex: anInteger
andSubjectChannel: aValueModel

^ValueHolder new

Thus any field or group of fields can be treated as a record. It can also be mapped to an
aspect or ignored. The decorators can be nested to map a record to an aspect or ignore it.

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

16 04/23/97 08:56

Since it doesn’t make sense to both map a field to an aspect and ignore it, code in
AspectFieldFormat and IgnoreFieldFormat prevents both of those decorators
from being applied to a single field.

Known Smalltalk Uses

Wrapper

The Wrapper hierarchy in VisualWorks is discussed above. Wrapper subclasses are
Decorators that can be added to VisualComponent s.

ValueModels

Several of the ValueModel classes in VisualWorks are decorators, as discussed above.

Stream Decorators

BOSSTransporter in VisualWorks is a Stream decorator. FormattedStream in
The File Reader framework is also a Stream decorator. Both examples are discussed
above.

FieldFormatDecorator

FieldFormatDecorator is a FieldFormatDescription decorator in The File
Reader framework. It is discussed in the Sample Code section.

SyntheticFont

SyntheticFont is a decorator in the ImplementationFont hierarchy in Visu-
alWorks. An ImplementationFont maps a Smalltalk font to one of the fonts built
into the operating system. (This is an Adaptor.) A SyntheticFont adds properties to
the font that the platform font may not support. For example, a SyntheticFont has a
“strikethrough” setting. When strikethrough is on, the SyntheticFont draws its
characters by drawing them first with the ImplementationFont and then drawing a
line through them to look like this: example of strikethrough.

Related Patterns

Decorator and Adapter

Decorator and Adaptor are often confused. Both are called “Wrapper” because they wrap
another object to change it. However, a Decorator preserves the interface of its Compo-
nent. An Adaptor specifically converts the interface of its Adaptee into the interface that
its Client expects. A Decorator changes or adds behavior to its Component; otherwise, it
has no value. An Adaptor can change or add behavior to its Adaptee, but its primary
purpose it to convert its interface. If an Adaptor has the same interface as its Adaptee, it
has no value. Decorators can easily be nested because they have the same interface.

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:56 17

Adaptors cannot be nested easily because the interfaces would have to alternate from one
to another to another.

Decorator and Proxy

Decorator and Proxy are often confused. A Decorator changes or extends the behavior of
its Component while preserving its Component’s interface. A Proxy controls access to
its Subject while preserving its Subject’s interface. A Decorator always allows access to
its Component. A Proxy does not change its Subject’s behavior except to make it avail-
able or unavailable. Various Decorator subclasses represent different behaviors that can
be added. Various Proxy subclasses represent different ways of controlling access.

For example, CachedImage is a class in the PixelArray /Image hierarchy in Visu-
alWorks that looks like a Decorator but is really a Proxy. It “decorates” an image by
caching the Image as a Pixmap , a form that is more efficient but less flexible. The
reason CachedImage is not implemented as a subclass of Image is that Image is an
abstract class with numerous concrete subclasses. By implementing CachedImage as a
“Decorator,” it can be wrapped around any Image subclass.

Yet unlike a Decorator, CachedImage does not add behavior, it simply adds effi-
ciency. The initialization of the caching is only invoked the first time the Cached-
Image is used, not every time the way Decorator behavior would be. Most importantly,
CachedImage fails the can-be-nested test: wrapping a CachedImage around another
CachedImage adds no benefit. Thus CachedImage is a Proxy that diverts use of an
Image to use a more efficient Pixmap instead.

Decorator, Composite, and Chain of Responsibility

Decorator and Composite are often used together in the same hierarchy. This is because
both of them require limiting the interface of their Component to a core interface that a
client can use with any node in the structure. Thus once the type’s interface has be lim-
ited for one pattern, the other pattern can easily be applied to also support that core in-
terface. Boiling down an extensive Component interface into a simplified core interface
is difficult. Once that is done, either Decorator or Composite can easily be applied.

A Decorator communicates with its Component through a Chain of Responsibility. A se-
ries of nested Decorators culminating with a ConcreteComponent form a chain. When a
message is sent to the top Decorator in such a chain, each Decorator decides whether to
handle the message, forward it to its Component, or both. If the message reaches the
ConcreteComponent, it is ultimately handled there.

See Chain of Responsibility for more details about using these three patterns together.

