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COMPOSITE  (DP 163) Object Structural

Intent

Compose objects into tree structures to represent part-whole hierarchies. Composite lets
clients treat individual objects and compositions of objects uniformly.

Structure

A typical Composite object structure might look like this:

Discussion

The key to the Composite pattern is two classes—one that represents atomic objects and
one that represents a group of such objects—that support the same core interface so that
clients can treat both kinds of objects the same way. The group object, called a Compos-
ite, acts like an atomic object by delegating its behavior to the objects in the group. Be-
cause both kinds of objects support a single core interface, clients can collaborate with
both kinds of objects interchangeably. The Composite itself is a client that takes advan-
tage of the polymorphic core interface because each of its group members might be an
atomic object, called a Leaf, or it might be another Composite. In this way, a Composite
can contain other Composites and so on until the final Composites contain nothing but
Leaves.
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The Composite pattern implements a “tree” data structure. Tree is one of the most com-
mon and powerful data structures in procedural programming, and its importance ap-
plies to object programming as well. Any hierarchical, compositional relationship lends
itself to being modeled as a tree: all of the various departments and offices within a gov-
ernment; the systems within a multiprocessor; the sales territories of a multinational
corporation. The question is: In what ways do the levels in the hierarchy behave the
same? What makes it recursive, almost fractal, so that every branch of the tree looks like
the whole tree and in fact looks like its own branches? The issue is not what makes the
levels and branches different, but in what makes them the same, because the properties
that are the same are reusable.

Tree Structure

There are three ways to structure a tree, as shown below: top-down, bottom-up, and dou-
bly-linked. In all three tree examples, the nodes and their relationships to each other are
the same. However, their structures are different because of the direction of their point-
ers. In a top-down tree, each branch points to all of its children, so a client can ask a
branch what its children are but a node does not know what its parent is. In a bottom-up
tree, each node points to its parent, but a branch does not know what its children are. In
a doubly-linked tree, each node knows both its parent and its children. The direction of
the pointers determines what direction messages can travel through the tree—down, up,
or both. (See Chain of Responsibility.)

The Composite pattern defines the first type of tree, a top-down tree where the compos-
ite knows what its children are and the messages travel down the tree.

Window Trees

Perhaps the best known but seemingly unlikely example of a tree structure is a window
in a windowing system. A window looks like a two-dimensional rectangle but is stored
internally as a tree. The window itself is the tree’s root, with the window’s subviews and
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their subviews comprising the branch nodes, ultimately culminating in widgets that are
leaf nodes.

In VisualWorks, a window’s tree is comprised of three distinct types of nodes: window,
subview, and widget. This instance diagram shows the object structure of a simple win-
dow. In a tree of visuals, each visual refers to its parent node as its container and to its
children nodes as its components. The structure is a tree (and not a graph) because each
node has exactly one parent (except for the root which by definition has no parent).

The three different kinds of nodes are easy to recognize by looking at how many compo-
nents each one has. The window node has just one component. The widgets are leaf
nodes because they have no components. The subview node is a branch node because it
has multiple components. Subviews are the composite in the Composite pattern.

In the Composite pattern, the Composite class and the Leaf class both have the same
core interface, as defined by their common Component superclass. Thus a client object
using a node in a tree does not have to distinguish between branch nodes and leaf nodes.
They both have the same core interface and so the client can simply send the node mes-
sages and know that whatever kind of node it is, it will respond to the message appro-
priately.

These are the main classes in the VisualComponent  hierarchy in VisualWorks.
Here, the Component class is VisualComponent , CompositePart  is the Compos-
ite class, and the Leaf classes are DependentPart  and SimpleComponent .

aWindow

aSubView

anInputField aSlider
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These VisualComponent  classes are the participants in the Composite and Decorator
patterns:

A composite and a leaf have the same core interface that allow them to work polymor-
phically. For example, in VisualWorks, any visual knows its preferred bounds. A leaf
visual simply knows how big it wants to be. A composite visual determines the preferred
bounds of its components and merges these overlapping rectangles into a single con-
tainer rectangle. Another example is the way all visuals know how to draw themselves.
A leaf visual just draws itself. Most composite visuals are invisible, so they just draw
themselves by telling their components to draw themselves. In this way, any branch of a
visual tree, from a single node to the entire tree, can be treated as a single visual and
told how to behave. How the behavior is produced is a function of the branch’s structure,
but that is hidden from the client object that makes the request.

Visual Smalltalk and IBM Smalltalk implement graphical windows in a similar manner.
Their classes are also listed in the table above. The composite visual classes are
GroupPane  in Visual Smalltalk and CwComposite  in IBM Smalltalk. Both visual
hierarchies are examples of the Composite pattern.

VisualComponent

VisualPart

DependentPart SimpleComponent Wrapper CompositePart components

container

Pattern Participant VisualWorks Class Visual Smalltalk
Class

IBM Smalltalk
Class

Composite and
Decorator

Component VisualComponent
and VisualPart

SubPane CwBasicWidget

Composite and
Decorator

Leaf /
ConcreteComponent

VisualComponent
and VisualPart

SubPane CwPrimitive

Composite Composite CompositePart GroupPane CwComposite

Decorator Decorator Wrapper none none
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Nested Composites

A key advantage of the Composite pattern is not just that a Composite can be used to
group together Leaves, but also that it can be used to group together other Composites as
well. In other words, a Composite can contain other Composites, which in turn can
contain other Composites, until finally all of the branches terminate with Leaves. This
forms a recursive structure such that the tree can have as many levels as necessary and
the difference between a tree and a branch is indistinguishable. The Structure object
diagram (shown above) illustrates this well.

Limited Types of Children

In general, a Composite can contain both Composite and Leaf nodes. However, some
domains restrict this. For example, a computer can be modeled to contain circuit boards
that contain chips.

Chip  is a Leaf class and Computer  and CircuitBoard  are Composite classes. The
Composite class specifies that it can contain any Components, but its subclasses are
more restrictive. A Computer  can only contain CircuitBoard s and a
CircuitBoard  can only contain Chip s.

So Computer  (which is a Composite) cannot directly contain a Chip  (a Leaf class),
even though the Composite pattern would normally allow it. Unrestricted application of
the Composite pattern would allow computers to contain other computers and for a
computer to contain both circuit boards and chips that are not part of any circuit board
(which makes you wonder what those chips are mounted on). To prevent these invalid
configurations that the Composite pattern would otherwise allow, the implementation of
the Computer  and CircuitBoard  classes must contain constraint code that disal-
lows them.

ComputerComponent

CompositeComponent

CircuitBoardComputerChip

LeafComponent components
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Thus the Composite pattern is so general as to allow any tree structure, even those that
may not make sense from a domain perspective. If the domain contains constraints on
what makes a valid tree, those constraints must be coded in the Composite class and its
subclasses.

Limited Number of Children

In general, a Composite can have an unlimited number of children. Typically, a branch
node doesn’t care how many branches it has. Most domains allow this and even expect
it. A composite visual doesn’t care how many component visuals it contains. A com-
puter usually doesn’t limit how many circuit boards it can contain, nor is there a limit
on the number of chips a circuit board can contain. A Composite’s implementation sup-
ports this by using a Collection  for its children. This way, the Composite can con-
tain as many children as necessary.

However, some domains limit the number of child nodes a branch can have. A binary
tree node cannot have an unlimited number of child nodes, just two at most. For exam-
ple, to model a single-celled organism that reproduces by splitting into two organisms,
you would track an organism, its pair of children, their children-pairs, and so on. Thus
each organism has only two children, not an unlimited number of children.

The Composite pattern supports branches with a fixed number of children as well as an
unlimited number. Design Patterns shows how the unlimited case is implemented using
a children  variable that is a Collection . To implement a limited number of chil-
dren, implement a separate variable for each potential child. For example, if the Com-
posite can only have two children, it should implement two variables like leftChild
and rightChild  or mother  and father . The Composite would also implement the
policy of what happens when one or more of the children are unspecified.

The Composite operations are also implemented differently in a Composite with a lim-
ited or fixed number of children. In the unlimited case, the children are stored in a
Collection ; a method iterates over them using a message like do:  (see the Iterator
pattern). With a limited number of children, the Composite operation accesses each
child explicitly and performs the operation on it separately. If the operation has results,
the Composite operation gathers those results and merges them.

For example, the typical code for an operation in a Composite with an unlimited number
of children would be:

Composite>>operation
self children do: [ :child | child operation]

The same operation in a Composite with exactly three children would be implemented
as:
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Composite>>operation
"Assumes none of the children is nil."
self firstChild operation.
self secondChild operation.
self thirdChild operation

Combination Component/Leaf Class

Smalltalk implementations of the Composite pattern often combine the Component and
Leaf classes into a single class called Component as shown below. For example, in the
VisualComponent  hierarchy in VisualWorks, VisualPart  plays the role of both
the Component class and the Leaf class. In Visual Smalltalk, Window plays both roles.1

Combining Component and Leaf together into one class can cause problems. You can no
longer introduce new behavior just for the Leaf classes without also introducing it into
the Composite classes as well. For example, in the VisualComponent  hierarchy, to
introduce behavior into all of the Leaf classes like DependentPart  and Simple-
Component , you would want to add the behavior to VisualPart . But by adding the
new behavior there, it will be inherited by non-Leaf classes like CompositePart  and
Wrapper . However, if the Leaf class is empty because it doesn’t have any behavior that
is different from the Component class, merge Leaf into Component to avoid imple-
menting an empty subclass.

Composite is a Subclass

One potentially confusing aspect of the Composite pattern for novice designers is that
the Composite class is a subclass of the Component class. This may seem counterintui-
tive because a Composite instance is a parent of the Components it contains. For exam-
ple, the Structure object diagram at the beginning of this pattern shows a typical tree
structure with Composites that contain Components. Each Composite is a parent of its
Components; the Components are the Composite’s children. It then seems obvious to
make the Component class a subclass of the Composite class. Yet the Component class

                                                       
1 In practice, only certain subclasses of Window are used as Composites, but in theory, any
subclass can be because they all have the children  instance variable.
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defines the interface that the Composite class must fulfill, so the Component class is the
superclass of the Composite class. Try not to confuse part-whole object relationships
with class inheritance.

No Component Superclass

Sometimes in Smalltalk, a Composite class and its Component class aren’t even in the
same hierarchy. In these cases, the Composite class is often part of the Collection hier-
archy. For example, a FontDescriptionBundle  in VisualWorks is a collection of
FontDescription s. A FontDescription  represents a platform-independent de-
scription of a font that will later be bound to a font on the runtime platform to display
text in that font. FontDescription  is a Proxy. FontDescriptionBundle  is
used to search a platform for multiple FontDescription s at once.

FontDescriptionBundle  is clearly a composite FontDescription . Not only
does the bundle contain multiple descriptions, but also the two classes share a core in-
terface that allow them to be used interchangeably and polymorphically. For example,
FontDescription>>findMatchOn:allowance:  searches the platform’s fonts
for a suitable match. FontDescriptionBundle  implements the same message to
look for a suitable match for any of its fonts. The operation is less likely to fail with a
FontDescriptionBundle  because of the multiple search criteria.

Because the two classes share the same interface and serve the same purpose, we’d ex-
pect them to be parts of the same hierarchy. Yet they are not. FontDescription  is a
subclass of Object  but FontDescriptionBundle  is a subclass of Ordered-
Collection . The classes’ lack of a common superclass makes it rather difficult to add
new behavior to both classes polymorphically. When a developer implements new mes-
sages in FontDescription , he must remember to also implement them in
FontDescriptionBundle —in a totally separate hierarchy—to preserve the classes’
polymorphism. This would be simpler and less error-prone if the two classes had a
common superclass that the developer could extend.

Component’s Core Interface

Design Patterns suggests that the Component class should have both generic operations
and ones that are Composite specific. This is reflected in the Structure diagram which
shows that Component (not Composite) should declare messages like Add() ,
Remove() , and GetChild() . Implementation points 3-5 (DP 167-69) discuss this as
a tradeoff between safety and transparency.

Design Patterns, being heavily weighted toward C++, favors transparency so that the
type checking in C++ isn’t too burdensome. If Component did not declare the Compos-
ite specific messages, code could not both treat a Composite as a more general Compo-
nent and send it the Composite-specific messages. It would first have to cast the Com-
ponent as specifically being a Composite before it could send those messages. Smalltalk
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does not have these typing constraints, so it favors safety over transparency. Since only
Composite can implement these messages in a useful way, they are not added to Com-
ponent and thus not implemented in Leaf.

The transparency that Design Patterns favors is problematic. The question is: If Com-
ponent is going to declare these composite messages, how should Leaf implement them?
It could implement them to do nothing and return nil , or to fail and return errors.
Safety says that a class should not understand messages that it cannot implement
meaningfully. Transparency says that all Component subclasses should implement the
same interface so that they can be used interchangeably.

Smalltalk solves this dilemma by employing a concept called a core interface. A core
interface is one that does not declare enough behavior to implement all of an object’s re-
sponsibilities, but one that is sufficient to support key collaborations. For example, the
Collection  classes Set , OrderedCollection , and SortedCollection  all
share two protocols that the proposed ANSI Smalltalk standard calls “extensible” and
“contractible.” (X3J20, 1996) This means that they understand messages like add:  and
remove: . This core interface is important because it allows these classes to be used
interchangeably whereas Array  could not be used in their place. However, the classes’
full interfaces are not the same. OrderedCollection  understands at:put:  but
Set  and SortedCollection  do not. SortedCollection  implements
sortBlock:  to set that attribute, one that OrderedCollection  and Set  do not
have. But these Collection  classes do work enough alike that a client using their
core add/remove interface does not need to know the collection’s class or its full inter-
face.

Using a core interface is a way of playing fast and lose with an object’s protocol that is
much more difficult in strongly-typed languages. In C++ or Java, a class’ interface must
be declared up front and the compiler ensures that all messages sent to an object are
ones that its class implements. Smalltalk is dynamically-typed, so the compiler does not
verify that an object understands the messages it is sent. However, at run time, if the
object does not understand the message, a message-not-understood error occurs.

The Composite pattern wants to treat Composite and Leaf objects interchangeably. It
wants to treat them both as Components. To accomplish this, in a strongly-typed lan-
guage, the Component must declare any message that any subclass (Composite or Leaf)
will implement. Thus it declares messages like addChild: , removeChild: , and
getChild: , and then forces Leaf to try to implement them. In a dynamically-typed
language like Smalltalk, the superclass (Component) need only declare the messages
that all subclasses will implement. The tradeoff is that clients who wish to treat Com-
posites and Leaves interchangeably must use only the core interface they share.

Thus the Structure diagram of the Composite pattern in Smalltalk is somewhat different
than the one shown in Design Patterns. The Component in Design Patterns implements
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composite messages like Add() , Remove() , and GetChild() . When implementing
the pattern in Smalltalk, the Component usually does not define these messages because
they are not appropriate for all subclasses. Component in Smalltalk only defines mes-
sages that are appropriate for all subclasses, such as operation . Then these are the
only messages that the Client can use transparently. To use the composite messages, the
Client must first determine that it is collaborating with a Composite, not just any Com-
ponent.

Implementing the Core Interface

As discussed above, the Component class defines a core interface that the Composite
and Leaf subclasses implement. Clients collaborate with Components through this core
interface so they can use Composites and Leaves interchangeably. For this to work suc-
cessfully, care must be taken in implementing the core interface.

First, implement the interface itself in the Component class with Template Methods.
This will define all of the interface’s messages in terms of a small number of kernel
messages. The Component should use as few kernel messages as possible because both
the Composite and Leaf classes will have to implement all of these messages.

Second, defer implementation of the kernel message in the Component class. It should
defer implementation of these messages to subclasses by implementing them as
subclassResponsibility  or implementedBySubclass .

Third, implement the kernel messages in the Composite and Leaf subclasses. In the Leaf
class, the message simply performs its behavior. In the Composite class, the message
forwards the message to each of its children and merges their behavior.

Fourth, avoid extending the core interface in any subclasses of Composite or Leaf. These
subclasses can have extended interfaces, but because they are not part of Component’s
interface, client objects will not be able to use this extended protocol polymorphically.
Thus to use the extended interface, the client will first have to determine the type of the
receiver. This goes against the spirit of the Composite pattern.

This fourth directive is especially difficult. It means that all subclasses essentially need
to have the same interface as the Component class. Thus the Component class needs to
declare not only its own interface, but also an interface extensive enough to satisfy all
subclasses as well. In practice, the messages that subclasses can still add are instance
creation messages. When a client is creating an instance, it knows the instance’s specific
class and uses its extended interface instead of Component’s.

For example, with the Composite class, the add-child messages are extensions, but are
used as part of instance creation when the client knows that it just created a Composite.
Similarly, a client checks to see if a node has a child it wants to remove, so it knows that
the node must be a Composite before sending the remove-child message. If the node
weren’t a Composite, it couldn’t contain the child in the first place.
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Field Format Description Trees

Another rather unintuitive example of the Composite pattern occurs when reading rec-
ord-oriented flat files. Each record is composed of fields, where each field is a simple
type such as a string or a number. Each file record corresponds to a record construct de-
fined in a procedural language. In an object-oriented language, the record construct cor-
responds to a class and each set of record data in the file corresponds to an instance of
the class.

Thus a framework for reading record-oriented flat files requires at least two classes,
Field  and Record , where Record  is a collection of Field s. These two classes will
work much better if they’re implemented using the Composite pattern. Then they can
implement a message like readFromStream:  polymorphically. Field  implements it
to read the next field from the file stream. Record  implements it to read each of its
fields from the stream, plus it reads its record delimiter if it has one. Thus a client can
use the same message to read a single field or a complete record without regard to which
one it’s actually reading.

The Composite pattern allows the framework to start nesting file structures. It does not
make much sense for one record to be nested inside of another. However, it does make
sense for a common series of fields to be nested inside another common series of fields.
This is essentially a sub-record nested in a record. For example, the fields for a Cus-
tomer might contain the fields for his Address. This corresponds to a domain object like
Address  being nested as a single object inside another domain object like Customer .
Thus a Record  is really just a CompositeField  with an optional record delimiter.
The true Composite class is CompositeField  which acts like a single field but actu-
ally contains multiple Field s. This allows nested object to be stored in the Record as
nested fields.

Missed Opportunities

Occasionally you find a class that would be easier to use if it had been implemented us-
ing the Composite pattern. The key to the Composite pattern is two polymorphic classes
where one class is a collection of the other. If a client has to distinguish between an ob-
ject and a collection of them, it would benefit from the Composite pattern. If a client has
to distinguish between objects with two different interfaces, it would benefit from a pat-
tern that introduces polymorphism. If one of the objects is a collection of the other,
Composite would be the best pattern.

For example, SelectionInList  in VisualWorks is a very useful class that tracks
both a list of objects and which one is currently selected. It is implemented using two
ValueModel s, one that holds the collection and another that holds the selection’s in-
dex in the collection. SelectionInList  is often used alongside ValueModel s,
where some aspect values are stored in ValueModel s and others are the current selec-
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tion in a list of possible values. However, SelectionInList s and ValueModel s
cannot be used interchangeably because they have different interfaces.

SelectionInList  and ValueModel  should be interchangeable. This would re-
quire giving them the same polymorphic interface. SelectionInList  should have
the same interface as ValueModel , where its value  is its selection. Then any widget
could use a ValueModel  without regard to whether it was a SelectionInList .

Thus some pattern should be applied to SelectionInList  and ValueModel  to
make them polymorphic. Since SelectionInList  is composed of two
ValueModel s, and because it should behave like a ValueModel , applying the Com-
posite pattern will cause the proper transformation. It will move SelectionInList
into the ValueModel  hierarchy and implement its ValueModel  interface by dele-
gating to its component ValueModel s and merging their behaviors together.

With SelectionInList  in the ValueModel  hierarchy, it would have to implement
the standard ValueModel  messages like value . Here’s an example of how that would
be implemented:

SelectionInList>> value
| list selectionIndex |
list := self listHolder value .
selectionIndex := self selectionIndexHolder value .
^selectionIndex = 0

ifTrue: [nil]
ifFalse: [list at:  selectionIndex]

Notice how SelectionInList , a Composite, implements value by delegating the
message to each of its component ValueModel s and merging their results together (in
this case using at: ). This is classic Composite behavior.

Implementation

There are several issues you should consider when implementing a Composite:

1. Use a Component superclass. A Composite subclass does not have to be imple-
mented in the same hierarchy as its Leaf class. However, the pattern will be much
easier the implement, recognize, and use when both classes are implemented in a
single Component hierarchy. This makes their polymorphism easier to define and
maintain.

2. Consider a Leaf subclass. Consider implementing a separate Leaf subclass of the
Component class. This will divide the Component hierarchy into two distinct subhi-
erarchies: Composite—classes that are composed of Components; and Leaf—classes
that cannot be decomposed.
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3. Only Composite delegates. The only composite class that should delegate to its
children is the top class in the Composite subhierarchy. All Composite subclasses
should defer their default behavior to their Composite superclass and let it handle
the delegation.

4. Nesting. Composites can be nested. Not only can a Composite contain Leaves, it can
also contain other Composites. Programmers often forget this and implement the
Composite to assume that its children are Leaves. The first time a client inserts a
Composite into another Composite as a child, the top Composite fails because of an
oversight in its implementation.

5. Kinds of children. Can the Composite contain any type of child? This is a domain-
specific issue, not an implementation issue. But if the design contains constraints on
which types of objects can be contained within Composite objects, the Composites’
implementations must enforce these constraints through validation code. For exam-
ple, an implementor of addChild:  may need to verify the child’s type before
adding it.

6. Number of children. Is the Composite’s number of children limited? If so, use a
separate variable to store each child. Otherwise, use a single Collection  variable
that can store an unlimited number of children. If the limit is large and the children
do not have individual roles within the Composite, use the Collection  variable
and enforce the limit in the addChild:  method. Implement the Composite opera-
tions accordingly.

7. Four ways to forward. There are four ways for the Composite to forward its opera-
tion messages to its component:

• Simple forward — Send the message to all of the children and merge the re-
sults without performing any other behavior.

• Selective forward — Conditionally forward the message to only some of the
children and merge the results.

• Extended forward — Perform extra behavior before and/or after forwarding the
message to some or all of the children and merging the results.

• Override — Perform behavior instead of forwarding the message to the chil-
dren; this behavior may be to do nothing.

Sample Code

Let’s look at a typical example from the financial domain, an Account that contains Se-
curities. An Account is composed of its Securities. Similarly, a client’s Portfolio is com-
posed of its Accounts. A Security can be a Stock, a Bond, or some other type of asset.
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A client will often want to know the value of his Portfolio. That is determined by sum-
ming the value of all of his Securities in all of his Accounts. A client might also want to
know if he owns a particular Security. That is determined by searching for that Securi-
ties in all of the Accounts in his Portfolio.

The basic object model for this domain would look like this.

To implement this object model, first we’ll implement Asset  as the Component class.
It does not need any variables. It declares two messages, value  and contains-
Security: , that its subclasses should implement.

Object subclass: #Asset
instanceVariables: ''
classVariables: ''
poolVariables: ''

Asset>>value
"Return the value of this Asset."
^self subclassResponsibility

Asset>>containsSecurity: aSecurity
"Answer whether this Asset contains aSecurity."
^self subclassResponsibility

Next we’ll implement Security . It will need an instance variable to store its value .
Since it can also implement value  and containsSecurity: , it does so.

Asset

value
containsSecurity: aSecurity

BondStock PortfolioAccount

assetsCompositeAsset

value
containsSecurity: aSecurity
addAsset: anAsset
removeAsset: anAsset

Security

value
containsSecurity: aSecurity
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Asset subclass: #Security
instanceVariables: 'value'
classVariables: ''
poolVariables: ''

Security>>value
"See superimplementor."
^value

Security>>containsSecurity: aSecurity
"See superimplementor."
"For a Leaf, we'll say it includes aSecurity
if it is aSecurity."
^self = aSecurity

Now we’ll implement the Composite class, CompositeAsset . It needs an instance
variable, assets , to store its children and a method to access this variable. It also im-
plements value  and containsSecurity:  as composite operations.

Asset subclass: #CompositeAsset
instanceVariables: 'assets'
classVariables: ''
poolVariables: ''

CompositeAsset>>assets
"Return the list of assets."
^assets

CompositeAsset>>value
"See superimplementor."
"Return the sum of the assets."
^self assets

inject: 0
into: [ :sum :asset | sum + asset value]

CompositeAsset>>containsSecurity: aSecurity
"See superimplementor."
"See if one of the assets is aSecutiry."
^self assets includes: aSecurity

Look closely at the implementation of containsSecurity: . It assumes that
assets  is a Collection  of Security s. That will usually be true when the Com-
posite is an Account , but not when it’s a Portfolio . Thus this implementation will
always return false  for a Portfolio , but this failure will not be obvious or easy to
find. Remember, a Composite does not just contain Leaves; it can also contain other
Composites. So containsSecurity:  must be implemented as though the assets may
be other Composites.



�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

16 04/23/97 08:53

CompositeAsset>>containsSecurity: aSecurity
"See superimplementor."
"See if one of the assets is aSecutiry."
self assets

detect: [ :asset | asset containsSecurity: aSecurity]
ifNone: [^false].

^true

This improved implementation of containsSecurity:  is an example of Chain of
Responsibility, as is the implementation of value . Notice that implementors in Com-
posite should use Chain of Responsibility, that the problem with the original implemen-
tation of containsSecurity:  is that it used includes: and so did not use Chain of
Responsibility.

Known Smalltalk Uses

Collection

Collection  itself is the ultimate example of the Composite pattern in Smalltalk, and
also the least useful. It implements the pattern with the Component class (Object ), the
Composite class (Collection ), and numerous Leaf classes (all other subclasses of
Object ). An element in a Collection  can be another Collection .

Object  defines operations that Collection  reimplements as composite operations.
For example, Object  defines printString  to display the receiver’s class.
Collection  reimplements it to display not just the Collection ’s class, but also the
printString s of the elements in the Collection . However, Object  does not
have a very customized interface, so neither does Collection . This is the least
domain specific example of the Composite pattern.

Visuals

The major Smalltalk dialects use the Composite pattern to implement their windowing
systems, as discussed earlier.

Field Format Descriptions

The File Reader (Woolf, 1997) reads record-oriented flat files by reading each record
one field at a time, as discussed earlier. The ability of a group of fields to act like a sin-
gle field is an example of the Composite pattern. It is implemented with three classes:
FieldFormatDescription  (Component) and two subclasses, LeafField-
Format  (Leaf) and CompositeFieldFormat  (Composite).

Media Elements

The Composite pattern is used in EFX, a digital video editing and special effects envi-
ronment (Alpert et al., 1995), to uniformly represent aggregate and primitive media
elements. EFX’s user interface incorporates a horizontal timeline for specifying the
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content of a video composition. The user adds rectangular bars that represent media
elements—video clips, audio segments, and special effects. Their position and width
along the timeline determines when they play and for how long. The editor provides
multiple tracks that enable multiple media to co-occur in time it.

At any time, multiple media elements in any number of tracks can be selected and
grouped. The result is a single group element containing the other elements, and visu-
ally portrayed as a grouped media element in a single track. Such aggregate elements
understand the same core protocol as individual media elements—all know how draw
themselves in the timeline, all provide trimming methods to increase/decrease their time
span, all implement accessor messages for their start time and duration, and so on. The
group element also supports nesting so that primitive and group elements may be aggre-
gated together into larger group elements.

Sentence Structures

ParCE, a natural language parser (Alpert & Rosson, 1992), represents sentence constitu-
ents as objects. It parses a sentence into a parse tree. In the tree, non-terminal constitu-
ent objects (Composites) represent the sentence, noun phrases, prepositional phrases,
and so on. They ultimately contain the appropriate terminal constituent objects (Leaves
representing nouns, verbs, determiners, etc.). All of these constituent objects—the indi-
vidual words, the phrases, and the sentences—respond to the same message protocol for
parsing, printing, accessing, and so on.

Brokerage Accounts

Frameworks that model the financial domain often implement a Composite class such as
Account  to represent brokerage accounts. Classes like Asset  and Security  define
the Component and Leaf classes. Account  defines a Composite asset that is composed
of other Asset s. Other Composite assets might be customer Portfolio , a broker’s
BrokerAccountsUnderManagement , the branch’s BranchAccountsUnder-
Management , etc. See the Sample Code section for details.

SignalCollection

SignalCollection  is a Composite class in the Collection  hierarchy in Visual-
Works. It does not contain a collection of Signal s; it is a collection of Signal s.

VisualWorks implements exception handling with two separate classes, Signal  and
Exception . Signal  describes the types of errors that can occur. Exception  de-
scribes a specific error. An Exception  refers to its Signal  to know what kind of er-
ror occurred. This is an example of the Type Object pattern. (Johnson & Woolf, in press)

To trap an Exception , the developer specifies the Signal  whose Exception s
should be trapped. Signal s form a hierarchy, so a Signal  will trap any Excep-
tion s for it or any of its child Signal s. However, to trap multiple Signal s from
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different parts of the hierarchy, the programmer has to specify each Signal  individu-
ally and tell the whole list to trap Exception s. He does this by creating a
SignalCollection  that contains the list of Signal  roots, then tells it to trap
Exception s just as if it were a single Signal .

Because Signal  and SignalCollection  have the same interface for trapping
Exception s, and because SignalCollection  works by delegating its behavior to
its Signal s, these two classes are an example of the Composite pattern. As with any
example where the Composite class is implemented in the Collection  hierarchy, this
example would be better implemented if Signal  and SignalCollection  were im-
plemented in the same hierarchy.

Composite ProgramNodes

SequenceNode  is a Composite class in the ProgramNode  hierarchy in Visual-
Works. Smalltalk compiles source code into a tree of parse nodes that are
ProgramNode s. There are different ProgramNode  subclasses for various program-
ming constructs, such as LiteralNode , BlockNode , AssignmentNode , and
ConditionalNode . SequenceNode  represents a series of statements (i.e., lines of
code) within a method or a block. Each of these statements is itself a ProgramNode , so
this is an example of the Composite pattern.

A more subtle example of Composite in the ProgramNode  hierarchy is
ConditionalNode . A ConditionalNode  has three main parts: condition ,
trueBody , and falseBody . They form an ifTrue:ifFalse:  statement like this:

condition  ifTrue: trueBody  ifFalse: falseBody

Each of these parts is itself a ProgramNode . ConditionalNode  is an example of a
Composite with a limited number of children, in this case three children variables for its
three main parts.

Other examples of Composite in the ProgramNode  hierarchy are: Arithmetic-
LoopNode , AssignmentNode , CascadeNode , LoopNode , SimpleMessage-
Node, and MessageNode . All of these classes contain multiple ProgramNode s and
combine them together to act like a single ProgramNode .

CompositeFont

CompositeFont  is a Composite class in the ImplementationFont  hierarchy in
VisualWorks. The hierarchy looks like this (using the VisualWorks convention showing
each class’ instance variables within parentheses):
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Object ()
ImplementationFont ()

CompositeFont (currentFont fonts ...)
DeviceFont ()

...
SyntheticFont (baseFont ...)

ImplementationFont  is an Adapter that adapts fonts to a standard, object interface.
DeviceFont  actually adapts one of the a native fonts on the platform. Synthetic-
Font  is a Decorator that adds effects that may not be available in the platform’s fonts.
CompositeFont  combines together multiple platform fonts to form characters that
my not otherwise be available in a single platform font, such as international characters.
It makes the combination of fonts act like one font.

This is a textbook example of both Composite and Decorator. It has the Component
class (ImplementationFont ), the Leaf/ConcreteComponent (DeviceFont ),
Composite (CompositeFont ), and Decorator (SyntheticFont ).

FontDescriptionBundle and SPSortedLines

FontDescriptionBundle  is a Composite class in VisualWorks. Its Leaf class is
FontDescription . VisualWorks uses a FontDescription  to search for a native
font the current platform that matches the description. The FontDescription  may
actually be a FontDescriptionBundle  that describes a range of fonts.

This example is difficult to recognize as being a Composite because the two classes are
not implemented in the same hierarchy as the pattern recommends. Instead, Font-
Description  is a subclass of Object and FontDescriptionBundle  is in the
Collection  hierarchy.

SPSortedLines  is a Composite class in VisualWorks whose Leaf class is SPFill-
Line . SPFillLine  is a line segment that has special behavior for determining if it
intersects with another line segment. SPSortedLines  is a collection of such lines.
This is another example of the Composite pattern where the Composite and Leaf classes
are not implemented in the same hierarchy.

Composite Numbers

Some Number classes are actually implemented using other Numbers. They are com-
posite numbers. Any Number class that is not a platform data type (e.g., integer, float,
or double) is probably a composite number. These composite numbers are examples of
the Composite pattern.

For example, the Fraction  class in Smalltalk is a composite number. It contains two
numbers, a numerator and a denominator, and uses them to compute its value. When di-
viding two numbers, storing the result as a Fraction  instead of a Float  avoids
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round-off error (although it also hurts efficiency). Since a Fraction  acts like a single
Number but is composed of two separate Numbers, it is a Composite.

Another example is a fixed decimal number class, such as FixedPoint  in Visual-
Works and Decimal  in IBM Smalltalk. A fixed decimal is like a floating point number
except that the fractional portion is stored as an integer to avoid round-off error. It is a
composite number because it is composed from simpler numbers, usually Integer s.

Beck (1996) briefly discusses a pattern called Impostor, a more domain-specific example
of a composite number. He uses the pattern to implement MoneySum, an object that will
add together two Money objects with different currencies without converting them to a
single currency. Rather than actually adding the Moneys, MoneySum just stores them
both, and presumably any others that might later be added in. Later, when the sum is
actually needed, such as to display the value in a certain currency, MoneySum performs
all of the conversions at once: it converts its contents to that currency and adds them to-
gether. This one set of conversions is usually more efficient than numerous intermediate
conversions to a currency that may not even be needed. Because MoneySum and Money
have the same interface, they can be used interchangeably. Thus MoneySum is a Com-
posite Money.

Related Patterns

Composite, Decorator, and Chain of Responsibility

Composite and Decorator are often used together in the same hierarchy. This is because
both of them require limiting the interface of their Component to a core interface that a
client can use with any node in the structure. Thus once the type’s interface has be lim-
ited for one pattern, the other pattern can easily be applied to also support that core in-
terface. Boiling down an extensive Component interface into a simplified core interface
is difficult. Once that is done, either Composite or Decorator can easily be applied.

A Composite communicates with its Components through a Chain of Responsibility. A
series of nested Composites culminating with a Leaf form a chain. When a message is
sent to the top Composite in such a chain, that Composite forwards the message to its
children. When the message reaches a Leaf, it is ultimately handled there. The
ConcreteHandlers in a Chain of Responsibility are not required to have the same inter-
face, as long as each handler knows the interface of its successor. However, Composites
do have the same interface, so Handlers in a chain of Composites forward the same mes-
sage repeatedly.

See Chain of Responsibility for more details about using these three patterns together.

Iterator

The Composite often uses the Iterator pattern to delegate a message to its children.


