
Chapter

30
Testing

It seems easier to write error free code in Smalltalk than in other languages. I suspect that this is partly

because it's difficult to have off-by-one errors, the garbage collector takes care of memory management, there is

a very rich class library, and there are no pointers. However, we still do create errors, both coding errors and

functionality errors — ie, we didn't code the correct functionality. So we need to test the software. Smalltalk

code is easy to test and debug because it is so interactive. However, as with any other language, once we've done

our initial development and testing, it is psychologically difficult to thoroughly retest after making changes.

What we need is way to develop test cases that can be retained and replayed after changes.

In this chapter we will look at a way to develop tests, and a user interface to run the tests. I want to

acknowledge Kent Beck and his article, Simple Smalltalk Testing (The Smalltalk Report, October 1994), for

presenting some interesting ideas that I used in developing the testing scheme that follows. This chapter contains

a lot of code. If you work through it then by the end of the chapter you should have a working test facility.

Hopefully you will also have learned some useful ideas for other problems you are working on. As in other

chapters, to save on space I won't generally use accessors for instance variables and the formatting is sometimes

tighter than usual. The code can also be found in the file testing.st.

The testing scheme here is not designed to test user interfaces. There are specialist products available to

capture and replay keystrokes and mouse actions. A good application will separate out the user interface from

the domain model, and it should be possible to test the domain model in isolation from the user interface. This is

where the classes described in this chapter can help. The scheme described uses a test manager to runs tests.

Rather than embed the tests within the classes that we want to test, we have separate test classes that exist in a

well-defined hierarchy. The test manager makes use of this hierarchy when figuring out which tests to run.

The Test class
The basic concept is that we have a TstTest class (Tst is the prefix I am using for my testing classes) that

provides the behavior for running tests cases. We organize our tests by subclassing off TstTest. Each test class

can have both individual tests to run, and subclasses that have their own individual tests and their own

subclasses.

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

Testing 2

This hierarchy mechanism gives us a way to organize our tests in some logical fashion. For example, you

might have the immediate subclasses of TstTest be ProductTests, SupportClassTests, and MyTests. Subclassed

off ProductTests you might have SystemTests and ComponentTests. Under MyTests could be tests that you have

written in conjunction with new code you are developing. When you are satisfied with the code and have

officially blessed it, you might move the tests you wrote into the ProductTests or SupportClassTests hierarchy.

Figure 30-1 illustrates the hierarchy.

TstTest

ProductTestsSupportClassTests MyTests

SystemTests ComponentTests

Figure 30-1.
The TstTest class hierarchy.

We run the tests using a test manager that organizes the test classes by their inheritance hierarchy. There are

two ways to run tests. The first way runs a hierarchy of tests and reports on the results in a TstResult. The second

way runs individually selected tests and raises an exception when a failure occurs, allowing you to go into the

debugger and look at the values.

Building the TstTest class

Object subclass: #TstTest
 instanceVariableNames: 'selector '
 classVariableNames: 'TestFailedSignal '
 poolDictionaries: ''
 category: 'TST–Test'

TstTest class
 instanceVariableNames: 'DisplayName '

If a test fails, our code raises a TestFailedSignal. Rather than create a signal for each test, we create it for the

class, which means we need a class initialization method. In this method we also set the name to be displayed by

the Test Manager.

TstTest class>>initialize
 "self initialize"
 DisplayName := 'All Tests'.
 TestFailedSignal := (self errorSignal newSignal)
 notifierString: 'Test failed: ';
 nameClass: self message: #testFailedSignal;
 yourself

TstTest class>>testFailedSignal
 ^TestFailedSignal

Testing 3

We don't really need to send the nameClass:message: message when creating the signal, but it's good

practice to include it when creating a signal because it allows other methods to create their own instance of a

TestFailedSignal.

The general idea is that a subclass of TstTest can have its own subclass hierarchy and some individual tests to

run. The test manager will find all the individual tests for a given test class, and create an instance of the class for

each test to run. The individual tests each have their own method name in the tests protocol. So when an

instance is created, the method selector to run is specified.

TstTest class>>newTest: aSelector
 ^self new initialize: aSelector

TstTest>>initialize: aSelector
 selector := aSelector

TstTest>>printOn: aStream
 aStream
 print: self class;
 nextPutAll: '>>';
 print: selector

What does an individual test look like? Below is an example of one. Notice that it does some work, then

sends the expect:string: message. This tells the test code that it expects the code in the block to evaluate

to true. If the code evaluates to false, the test fails. The string that is sent as a parameter is simply a way of

making it easier to find the part of the test that failed. If you only have one result, you can do self expect:

[some code].

SomeTest>>driveBusy
 | request response |
 request := self myMountRequest: 'PAYROLL' drive: 'DRIVE2'.
 response := self mySendMessage: request.
 self expect: [response isSuccessResponse] string: 'Mount first
volume'.
 request := self myMountRequest: 'BKUP950524' drive: 'DRIVE2'.
 response := self mySendMessage: request.
 self expect: [response isFailureResponse] string: 'Mount second
volume'

Let's take a look at what expect: and expect:string: do.

TstTest>>expect: aBlock
 self expect: aBlock string: nil

TstTest>>expect: aBlock string: aStringOrNil
 aBlock value ifFalse:
 [self class testFailedSignal raiseErrorString: aStringOrNil]

If the block evaluates to false, we ask our TestFailedSignal to raise an exception. If we specified a string,

then it raises the exception using our string as the error string. I'm not going to show them, but you can write the

corresponding reject: and reject:string: methods that reject the result — ie, raise the exception if the

block evaluates to true.

Testing 4

Now we need to see how the exception is handled. To do this we look at how the tests are run. Remember

that we specified the selector (or method) to run when we created the instance of the test and stored the selector

in an instance variable. To run the method, we have to perform the selector.

TstTest>>performTest
 self perform: selector

We have two ways of performing the test. We can send the run message or the run: message to the test

instance. If we send run, there is no exception handling and if a test fails, the exception will raise a notifier

window, allowing us to immediately debug the code that failed. If we send run:, we specify a test result object

in which we will record information about the test.

TstTest>>run
 self performTest

TstTest>>run: aTestResult
 self errorSignal
 handle: [:ex | aTestResult error: ex localErrorString in: self]
 do: [self class testFailedSignal
 handle: [:ex | aTestResult failure: ex localErrorString in:
self]
 do:
 [aTestResult incrementCount.
 self performTest]]

There are two things that can go wrong with a test: a failure, where the result is different from what we

expected, and an error, where there is an error in the test (for example, the test might send a message that is not

understood). We trap both conditions in the run: method.

The innermost exception handler looks specifically for TestFailedSignal exception that we raise if we get an

unexpected result. If it comes across one, in the handle: block it logs the failure in the test result. The

outermost exception handler traps all exceptions other than those raised by TestFailedSignal. So if we send a not

understood message, or do a division by zero, or try to access a non-existent array element, they will all be

handled in the handle: block, which logs the error in the test result.

Finally, on the class side, we write several methods that will be used when interacting with the test manager.

The first method specifies the protocol that contains all the individual test case selectors. The second method

uses meta-programming to return the names of all the individual test cases in sorted order, and the third method

returns the actual test cases.

TstTest class>>testProtocol
 ^#tests

TstTest class>>individualTestNames
 ^(self organization listAtCategoryNamed: self testProtocol)
asSortedCollection

TstTest class>>individualTests
 ^self individualTestNames
 collect: [:each | self newTest: each]

The next two methods are used to return a collection of the test superclasses of the test that has been selected

to run. This collection will be used for doing setup and cleanup work prior to and after running the test.

Testing 5

TstTest class >>rootTestClass
 ^TstTest

TstTest class>>testSuperclasses
 "Returns a collection of the superclasses up to the root test
class"
 | collection class |
 collection := OrderedCollection new.
 class := self.
 [class == self rootTestClass]
 whileFalse:
 [class := class superclass.
 collection add: class].
 ^collection

The Test Result
The test result is the object that stores information about the errors and failures.

Object subclass: #TstResult
 instanceVariableNames: 'test startTime stopTime count failures
errors '
 classVariableNames: ''
 poolDictionaries: ''
 category: 'TST–Test'

TstResult class>>newFor: aTest
 ^super new initialize: aTest

TstResult>>initialize: aTest
 test := aTest.
 count := 0.
 failures := OrderedCollection new.
 errors := OrderedCollection new

TstResult>>incrementCount
 count := count + 1

The failure:in: method below stores the test case and string in the failure collection. There is an

equivalent (but not shown) method for error:in:. Since there are only two parameters, the test case and the

string, we store them in an Association. If we ever wanted to record more than two pieces of information, we

would create a new class.

TstResult>>failure: aString in: aTestCase
 failures add: aTestCase –> aString

TstResult>>start
 startTime := Timestamp now

There is a corresponding stop method. The final thing is to provide a printOn: method for TstResult.

Figure 30-2 shows how a test result might appear when displayed in an inspector window. Following the figure

is the code that generates the output.

Testing 6

Figure 30-2. The output of a test result.

TstResult>>printOn: aStream
 aStream nextPutAll: 'Name: '.
 test printOn: aStream.
 aStream
 cr; nextPutAll: 'Tests run: '; print: count;
 cr; nextPutAll: 'Start time: '; print: startTime;
 cr; nextPutAll: 'Stop time: '; print: stopTime.
 self myPrintFailuresOn: aStream.
 self myPrintErrorsOn: aStream

TstResult>>myPrintFailuresOn: aStream
 failures isEmpty ifFalse:
 [self
 myPrintCollection: failures
 label: 'Failures'
 on: aStream]

TstResult>>myPrintCollection: aCollection label: aString on: aStream
 aStream
 cr; cr;
 nextPutAll: aString;
 nextPutAll: ': ';
 print: aCollection size.
 aCollection do:
 [:each |
 aStream cr.
 each key printOn: aStream.
 each value notNil
 ifTrue:
 [aStream nextPutAll: ' ('.
 aStream nextPutAll: each value.
 aStream nextPut: $)]]

Testing 7

The Test Manager
Now that we have the test class, let's look at how we might create a user interface to run the tests. First, create

a window with a read-only input field, three action buttons, a check box, and two list widgets. Figure 30-3 shows

the window.

Figure 30-3.
The Test Manager.

The read-only input field at the top left displays the currently selected test. To the right is another window

showing all the immediate subtests of the current test. Below is a pane showing all the individual tests associated

with the current test. There are three action buttons: Run Tests, which runs the hierarchy of tests from the

displayed test down; Up a Level, which makes the next higher test in the hierarchy the current test; and Run,

which runs the tests that have been selected in the Individual Test pane. Below are the class definition and

initialize method. In the aspects protocol we also need to write methods to get the instance variables

(we won't show the getters here).

ApplicationModel subclass: #TstTestManager
 instanceVariableNames: 'mainTest subTestList individualTestList
doSetupCleanup '
 classVariableNames: ''
 poolDictionaries: ''
 category: 'STBE-Testing'

TstTestManager>>rootTestClass
 ^TstTest

TstTestManager>>initialize
 mainTest := self rootTestClass asValue.
 doSetupCleanup := false asValue.
 subTestList := SelectionInList new.
 subTestList selectionIndexHolder onChangeSend: #changedSubTest to:
self.
 individualTestList := MultiSelectionInList new.

Testing 8

 self myBuildLists.

Let's take a look at what we are doing in the initialize method. First, we set our main test from the root

test class. Next we set our subTestList variable to be a SelectionInList and we register the Test Manager as a

dependent of the SelectionInList, asking to be sent the changedSubTest message if the user selects or

deselects a test in the right hand pane. Finally, we initialize the individual test list to be a MultiSelectionInList,

which allows the user to select multiple individual test cases to run. Finally, after setting up the variables, we

build the subtest and individual test lists for the current main test.

In the initialize method we told the SelectionInList object to send us a message if the selection index

changes. Here's what we do in the changeSubTest method. If the user selected a test in the right hand pane,

we want to make it the main test then display its sub-tests and its individual tests, if any.

TstTestManager>>changedSubTest
 self subTestList selection notNil
 ifTrue:
 [self mainTest value: self subTestList selection.
 self myBuildLists]

If the user wants to go back up a level in the test hierarchy and presses the Up a Level button, we execute the

method showSuperclass, which sets the main test to be the superclass of the current test (unless we are

already at the root test class), and rebuilds the subtest and individual test lists.

TstTestManager>>showSuperclass
 | mainTestClass |
 mainTestClass := self mainTest value.
 mainTestClass == self rootTestClass
 ifFalse:
 [self mainTest value: mainTestClass superclass.
 self myBuildLists]

We've now seen several references to myBuildLists, so let's take a look at the method.

TstTestManager>>myBuildLists
 | test |
 test := self mainTest value.
 self subTestList list: test subclasses asSortedCollection.
 self individualTestList list: test individualTestNames

There are several points to note when looking at this method. When we create the list of subtests, we want to

display the subtests in alphabetic order, so we send the asSortedCollection message to the collection. For

this to work, we need to make sure that our test case classes respond to the <= message which is used to sort a

collection.

TstTest class>> <= anObject
 ^self displayString <= anObject displayString

TstTest class>>displayString
 ^DisplayName notNil
 ifTrue: [DisplayName]
 ifFalse: [self name]

ProductTests class>>initialize
 "self initialize"

Testing 9

 super initialize.
 DisplayName := 'Product Tests'

Note that these methods are all written on the class side since we are displaying classes in the input field and

in the subtest list. The displayString message is sent to an object by a SelectionInList and by an Input field

(for the input field to work, in the Properties Tool you must define it as holding an Object). We override the

default displayString to return the display name, assuming that the DisplayName class instance variable

has been set in the class. This allows us to display something more reasonable than the class name. If we haven't

set the DisplayName, the class name will be displayed instead. The third method show here gives an example of

how a class would set its DisplayName.

Running Tests

All Tests
When you press the Run Tests button, you run all the individual tests associated with the displayed test, then

recursively go through the sub-tests, running all the individual tests associated with each sub-test and all their

sub-tests. The action associated with the Run Tests button is the runTests method.

TstTestManager>>runTests
 | testClass testResult |
 testClass := self mainTest value.
 testResult := self myTestResultFor: testClass.
 self myDoHierarchySetupFor: testClass.
 testResult start.
 self myRunTestsForClass: testClass result: testResult.
 testResult stop.
 self myDoHierarchyCleanupFor: testClass.
 testResult inspect.

We start by creating a test result which we use to record the results of the tests. The code to return a test

result is shown here.

TstResult>>myTestResultFor: aTest
 ^TstResult newFor: aTest

We then do any setup for higher level classes, run the test hierarchy, and do any cleanup for higher level

classes. Each test class in the hierarchy can do setup before and cleanup after running the tests. This allows the

classes to set up any conditions that are required for the test. Typically this involves such things as populating

classes with needed data or making sure that databases have the correct records. We give each class in the

hierarchy the opportunity to do any setup and cleanup. For setup we start at the root test class and work down to

our immediate superclass. For cleanup we do this in reverse, starting at our superclass and working up to the root

test class. We'll run setup and cleanup for the current test and its subtests later.

(One thing to note is that we assume the setup and cleanup will work. This test manager doesn't have the

ability to handle problems in setup and cleanup, or handle exceptions raised there.)

We have a method that determines whether any setup should be done, and another method that does the setup

for all the superclasses in the hierarchy. We won't show them, but there are similar methods for doing cleanup.

Testing 10

TstTestManager>>myDoSetupFor: aClass
 (aClass class includesSelector: #setUp)
 ifTrue: [aClass setUp]

TstTestManager>>myDoHierarchySetupFor: aClass
 aClass testSuperclasses
 reverseDo: [:each | self myDoSetupFor: each]

A feature of our setup is that we don't want to inherit setup methods from superclasses. If we allowed

inheritance, we would do the same setup more than once if a particular class in the hierarchy didn't need to do

any setup. We handle this with the code:

each class includesSelector: #setUp

This code checks to see if the named selector has been defined by the class. We can't use respondsTo:

because this will also return true if the method is inherited from a superclass, which we specifically don't want.

The cleanup methods looks very similar except that they use cleanUp rather than setUp, and because cleanup

should occur in the opposite order to setup, myDoHierarchyCleanupFor: sends do: rather than

reverseDo:.

A point to note is that we define the setUp and cleanUp methods on the class of the test classes side

rather than the instance side. This is because we want to potentially invoke these methods for several classes in

the test case hierarchy. The only way we could do this on the instance side would be to create an instance of each

class in the hierarchy, then send it the message. It's a lot cleaner to put the behavior on the class side.

Here is another method for which we need to look at the code.

TstTestManager>>myRunTestsForClass: aClass result: aTestResult
 self myDoSetupFor: aClass.
 aClass individualTests
 do: [:each | each run: aTestResult].
 aClass subclasses do:
 [:each | self myRunTestsForClass: each result: aTestResult].
 self myDoCleanupFor: aClass

When we run tests for a class, we do any set up for the test class we are running, we run any individual tests

defined on the test class, we go through all our sub tests, asking them to do exactly what we are doing, then we

do any clean up for the test class. So in this method, we recursively ask all our subclasses to execute this same

method. This gives us a depth first recursion through the whole sub test hierarchy for this test. Well, that's it for

running a hierarchy of tests. The other way to run tests is by selecting individual tests to run.

Selected Tests
The Test Manager has a different philosophy when running individual tests. Rather than going through all the

setup and cleanup of classes higher in the test hierarchy, it assumes that any setup has already been done (you

can change this by clicking the Run setup/cleanup check box). However, it does do setup and cleanup for the

current test class. It also runs the tests without a test result wrapper, which means that if an individual test fails, it

will raise a Notifier window and let you start debugging. You can select multiple tests to run in the individual

test window, then when you press the Run button, the runSelected method is executed.

TstTestManager>>runSelected

Testing 11

 | selectedTests testClass testCollection |
 selectedTests := self individualTestList selections.
 selectedTests isEmpty ifTrue: [^self].
 testClass := self mainTest value.
 testCollection:= selectedTests collect: [:each | testClass
newTest: each].
 self doSetupCleanup value ifTrue: [self myDoHierarchySetupFor:
testClass].
 self myRunSelectedCases: testCollection forClass: testClass.
 self doSetupCleanup value ifTrue: [self myDoHierarchyCleanupFor:
testClass]].

If any individual tests have been selected, we create a collection of test objects, one for each test selected. We

then run the selection in another method.

TstTestManager>>myRunSelectedCases: aCollection forClass: aClass
 self myDoSetupFor: aClass.
 aCollection do: [:each | each run].
 self myDoCleanupFor: aClass

At this point we do setup for the class we are in, we run each test without a test result wrapper, then we do

any cleanup. Because we are not using a test result, any failure will cause a Notifier window to be displayed.

Running tests that never complete
Some tests may never complete because they are waiting for something that doesn't happen. This presents a

problem in the current scheme because the rest of the tests will never run, and you will not see the test result. If

you have such a situation, you can replace the performTest method with the following code. However, a

more likely scenario is that you have only a few tests with the potential to wait forever. For example, your

System Tests might have the potential to hang, but other tests will always complete. In this case, you would

override performTest in the SystemTest class. Or you could set up a two branch hierarchy under TstTest, one

branch for tests that have the potential to hang and one branch for those that don't.

TstTestManager>>performTest
 | testProcess timeoutProcess sharedQueue exceptionOrNil |
 super class showContext: thisContext.
 sharedQueue := SharedQueue new.
 testProcess :=
 [self errorSignal
 handle: [:ex | sharedQueue nextPut: ex]
 do:
 [self perform: selector.
 sharedQueue nextPut: nil]] fork.
 timeoutProcess :=
 [(Delay forSeconds: self timeoutValue) wait.
 sharedQueue nextPut: (self errorSignal newException
errorString: 'TIMEOUT')] fork.
 exceptionOrNil := sharedQueue next.
 testProcess terminate.
 timeoutProcess terminate.
 exceptionOrNil notNil ifTrue:
 [exceptionOrNil propagateFrom: thisContext]

We run the test in a forked process and create another forked process that will wait for some timeout period.

Both forked processes put something on a SharedQueue when they have done their work, and the main flow

Testing 12

waits until it can read something from the queue. It then takes action based on what it gets off the queue. Let's

look at the details.

In testProcess we run the test, wrapped in an all-encompassing signal handler. If the test succeeds, we put nil

on the shared queue. Seeing nil tells the main flow that the test succeeded. If the test does not succeed, an

exception is raised as we saw earlier in the chapter. We trap the exception and put it on the shared queue. In

timeoutProcess we simply wait for some timeout period then we create an exception and put it on the shared

queue. Since we are using a message send to get the timeout value (you'll have to write the timeoutValue

method and have it return a number), subclasses can override the value if they need a different timeout period.

The main flow of control waits for one of the processes to put something on the shared queue. This will

either be nil, which means the test succeeded, or an exception, which we raise again so that the code in the run

or run: method can handle it appropriately. It also terminates both forked processes since they are no longer

needed (sending terminate to an already terminated process is benign).

We do things this way because when a process is forked it gets its own context. A signal handler in one

context can't trap an exception raised in another context, so we trap the signal in the forked process, give it to the

main process, and let the main process start it up again as though it came from the main process.

Loading in the tests
Besides having a mechanism for filing in all the tests or a subset of the tests, you might find it useful to have

each class responsible for filing in tests that test it. A mechanism for doing this is to have fileIn code in a class-

side method such as:

MyClass class>>fileInTests
 "self fileInTests"
 #('MyTest1.st'
 'MyTest2.st'
) do: [:each | (self myTestDir construct: each) fileIn]

In this chapter we have looked at a test scheme that makes use of a test manager to run the tests. We could

extend this scheme and give each class the ability to test itself using the TstClass functionality. For example, we

might write a method such as the following on the class side of classes we wish to test.

MyClass class>>runTests
 "self runTests"
 #(MyTestOne
 MyTestTwo
) do: [:className | (Smalltalk at: className) individualTests do:
[:test | test run]]

However, the technique shown still relies on there being separate classes to do the testing. An alternative

scheme would be to keep the test cases completely within the classes to be tested, but such a scheme goes

beyond the scope of this chapter.

	Testing
	The Test class
	Building the TstTest class

	The Test Result
	The Test Manager
	Running Tests
	All Tests
	Selected Tests

	Running tests that never complete
	Loading in the tests

