
Chapter

29
Meta-Programming

In Smalltalk, we usually write code that creates objects then makes the objects interact by sending each other

messages. Sometimes, however, you will want to do a different type of programming, one that makes use of the

internal structure of classes and objects. You may want to find out what variables a class defines, what methods

it implements, or whether it defines a particular protocol. You may want to do some operation for each subclass

of a class. This type of programming is called meta-programming.

Meta programming is not for the faint of heart or for the inexperienced. However, as you become more

comfortable with Smalltalk, you may find it useful to know something about how things are done behind the

scenes. The main classes to look at are Behavior, ClassDescription, Class, and Metaclass, all of which reside in

the Kernel-Classes category. We'll talk a little about how these classes interact, but for a fuller description see

the Purple Book (Smalltalk-80, The Language, by Adele Goldberg and David Robson, Addison-Wesley).

Classes and Metaclasses
Let's start by taking a look classes and their metaclasses. Just as an OrderedCollection is an instance of the

class OrderedCollection, the class OrderedCollection is an instance of another class. A class whose instances are

classes is called a metaclass, so OrderedCollection is an instance of its metaclass. When you define a new class,

a new metaclass is automatically created for it — the metaclass has exactly one instance, the class you created.

The metaclass is an instance of the class MetaClass and it has no name, so you can't look at it in a Browser. If

you inspect the two statements below that were evaluated in a plain VisualWorks 2.5 image, you'll see that the

number of subclasses of Object is about twice the number of class names in Smalltalk 1. This illustrates the point

that each class has a unique metaclass.

Object allSubclasses size. 1903
Smalltalk classNames size. 960

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

1 The first number is not exactly twice the second since there are a few classes that are not subclassed off Object.
Also, the number of subclasses of Object is an odd number because Metaclass is a strange oddity, having a
metaclass of Metaclass.

Meta-Programming 2

Since a class is an instance of its metaclass, what we think of as class side methods are really instance side

methods of the class's metaclass. Every class has an instance variable, methodDict, that stores the methods that

have been defined by the class for invocation by instances of the class. So in the methodDict variable of a class's

metaclass are stored the methods that have been defined on the metaclass for invocation by its instances — in

this case the single instance which is the class. Thus all methods are really instance methods. To see a concrete

example for yourself, inspect OrderedCollection and look at the methodDict variable. This shows all the

instance side methods of OrderedCollection. Now inspect OrderedCollection class and look at

methodDict. You will see the class side methods of OrderedCollection. Figure 29-1 shows the two inspectors.

Figure 29-1. The methods of a class and its metaclass.

So, if you send initialize to an instance of a class, you are invoking the instance method of the class. If

you send initialize to the class, you are invoking the instance method of the class's metaclass. For example,

to count the number of methods defined for OrderedCollection on both the instance and class side, you can do

the following. This counts the number of methods defined by OrderedCollection plus the number of methods

defined by OrderedCollection's metaclass.

OrderedCollection selectors size + OrderedCollection class selectors
size.

Because class side methods are actually defined on the class's metaclass, the notation for class side methods

of MyClass class>>myClassMethod is more than just a notation convention. It actually correctly describes the

structure since MyClass class returns the metaclass.

Just as instance side methods are defined by the class and class side methods are defined by the metaclass,

instance variables are defined by the class, and class instance variables are defined by the metaclass. A class has

a variable named instanceVariables, in which are stored the names of the instance variables of the class's

instances. Similarly, the class's metaclass stores the names of the instance variables of its instances — ie, of the

class itself. To make all this talk of method dictionaries and instance variables clearer, take a look at the code in

the file metademo.st. Figure 29-2 shows inspectors looking at instance variables of a class and its metaclass

where the class has defined instance, class, and class instance variables.

Meta-Programming 3

Figure 29-2. Instance variables of a class and its metaclass.

Adding general class side behavior
In chapter 32, Changes to System Classes, we will see examples of adding general instance side behavior to

Object so that all instances inherit the behavior. In this section we will look at adding general class side behavior

that is inherited by all classes. The obvious place to add general class methods is the class side of Object.

However, if you look at the class side methods of Object you will see that there are very few of them, and that

most of them are associated with the signals that Object keeps in its class variables. Methods such as new and

new: are conspicuously absent. So if methods associated with class side behavior of subclasses is not found in

Object, where are they found?

Just as instances execute methods defined either on their class or a superclass of their class, classes execute

methods defined either on their metaclass or a superclass of their metaclass. So if you want a class side method

that all classes will inherit, you can either write in on the class side of Object (where it is implemented on

Object's metaclass), or on the instance side of one of the superclasses of Object's metaclass.

The superclass of Object's metaclass is Class — ie, Object class superclass is Class. Class has a

superclass of ClassDescription, which has a superclass of Behavior. So to add general class side behavior, we

can add it to the class side of Object or we can add it to the instance side of Class, ClassDescription, or Behavior.

Both Class and ClassDescription are associated with the internal workings of classes and instances, with the

handling of classes, variables, protocols, etc. Behavior provides additional behavior and is where new and new:

are defined. The class comment for Behavior includes the following: "Most objects are created as instances of

the more fully supported subclass, Class, but Behavior is a good starting point for providing instance-specific

behavior." Thus, based on the purpose of these three classes, the instance side of Behavior is the most

appropriate place to add general class side methods.

As an interesting note, the superclass of Behavior is Object. So, to add new class side behavior, we could

actually add the method to the instance side of Object. We can demonstrate this by sending a method defined on

the instance side of Object to a Class (for example, OrderedCollection basicSize). Try the following.

Define the method foo on the instance side of Object, then send it to the class OrderedCollection and to an

instance of OrderedCollection.

OrderedCollection new foo.
OrderedCollection foo.

Meta-Programming 4

Object>>foo
 Transcript cr; show: thisContext printString.

Of course, the problem with defining new class side behavior on the instance side of Object is that it will be

inherited by both instances and classes, which is not what we want. Figure 29-2 illustrates the parallel instance

and class side hierarchy.

Collection

Set

Object

nil

ClassDescription

Object class

 Class

Collection class

Set class

Behavior

Figure 29-3.
The instance and class side hierarchy.

Examples we've seen in other chapters
We've seen examples of meta-programming in other chapters. For example, in Chapter 15, Printing Objects,

we wrote printAllOn: using the messages allInstVarNames, instVarIndexFor: and

instVarAt: to find the names and values of instance variables. In Chapter 30, Testing, we send the message

includesSelector: to find out if a particular message selector is defined by a specified class. In the same

chapter we send the messages organization and listAtCategoryNamed: to get the names of all the

methods in a specified method protocol. In Chapter 33, Managing Source Code, we show how to count the

number of classes and methods in the image using the classNames and selectors messages.

Examples we promised in other chapters

Finding classes with a specified protocol
In Chapter 20, Error Handling, we mentioned that we would write code to find all the classes that contain a

specified protocol. If you follow the convention mentioned in Chapter 32, Changes to System Classes, you will

put additions to system classes in a protocol named (additions). When we get a new release of

VisualWorks, we may need to find all the system classes to which we've added methods, so let's write our code

to look for all classes that include the protocol (additions).

Object allSubclasses select:
 [:each | each organization categories includes: #'(additions)'].

Meta-Programming 5

The above example finds all the classes that contain the (additions) protocol on either the class or

instance side. It works because the subclasses of Object include both the regular classes and also their

metaclasses. If we just wanted to find the classes that include the protocol on the class side we would look only

at metaclasses, as in the example below. (Correspondingly, to find classes that include the protocol on the

instance side we would replace each isMeta with each isMeta not.)

Object allSubclasses select:
 [:each | each isMeta and: [
 each organization categories includes: #'(additions)']].

The top-level classes in Smalltalk have nil as their superclass, with Object being the main top-level class. To

find all the classes that have nil as their superclass, inspect Class rootsOfTheWorld. If you want to see all

the classes that include the (additions) protocol, including Object and other class hierarchies that are

subclassed off nil, do the following.

collection := OrderedCollection new.
Smalltalk allBehaviorsDo:
 [:each | (each organization categories includes: #'(additions)')
 ifTrue: [collection add: each]].
collection inspect.

The Browser makes heavy use of meta-programming, and you can find some interesting methods on its class

side. For example, to find the names of all the methods in all the class side (additions) protocols, inspect

the first example. To browse all the methods in these protocols, do the second example.

Browser allClassMethodsInProtocol: #'(additions)'.
Browser browseAllClassMethodsInProtocol: #'(additions)'.

To look at all methods rather than just class side methods, create a new method,

allMethodsInProtocol:, which tells you all the classes with the specified protocol, regardless of whether

the protocol appears on the class side or the instance side. Base the new method on

allClassMethodsInProtocol: but remove the isMeta test. Also create a new method,

browseAllMethodsInProtocol:, basing it on browseAllClassMethodsInProtocol:, but

sending the allMethodsInProtocol: message instead of allClassMethodsInProtocol. You can

now browse all your additions to system classes by doing the following.

Browser browseAllMethodsInProtocol: #'(additions)'.

allInstancesAndSubInstances
In Chapter 16, Processes, we mentioned that if you subclass off Process, you will need to modify code

reading Process allInstances to now read Process allInstancesAndSubInstances. Here's

the definition of this new method. Note the yourself in the into: block which guarantees that the block value is

the collection that will be injected in the next iteration.

Behavior>>allInstancesAndSubInstances
 ^self withAllSubclasses
 inject: OrderedCollection new

Meta-Programming 6

 into: [:coll :each | coll addAll: each allInstances;
yourself]

Creating accessors for instance variables
In Chapter 3, Methods, and Chapter 4, Variables, we mentioned that we would write code to automatically

create accessors for our instance variables. To do this we add the following methods to Class. This mechanism

will create public and private (my prefixes) accessors for each instance variable. You can then remove the ones

that you don't need. To save space, we only show two of the methods that return the string used to create the

accessing methods, and have compressed cascades and other messages. We also make use of the capitalize

method we wrote in Chapter 12, Strings.

Class>>mySubclass: t instanceVariableNames: f classVariableNames: d
poolDictionaries: s category: cat
 | newClass |
 newClass := self
 subclass: t instanceVariableNames: f classVariableNames: d
 poolDictionaries: s category: cat.
 newClass instVarNames do:
 [:each |
 newClass compile: (self getAccessor: each) classified:
#accessing.
 newClass compile: (self setAccessor: each) classified:
#accessing.
 newClass compile: (self myGetAccessor: each) classified:
#'private-accessing'.
 newClass compile: (self mySetAccessor: each) classified:
#'private-accessing'].
 ^newClass

Class>>getAccessor: aName
 | stream |
 stream := String new writeStream.
 stream nextPutAll: aName.
 ^self getAccessor: aName stream: stream

Class>>mySetAccessor: aName
 | stream |
 stream := String new writeStream.
 stream nextPutAll: 'my'.
 stream nextPutAll: aName capitalize.
 ^self setAccessor: aName stream: stream

Class>>getAccessor: aVariableName stream: aStream
 ^aStream crtab; nextPut: $^; nextPutAll: aVariableName;
 contents

Class>>setAccessor: aVariableName stream: aStream
 | value prefix |
 value := aVariableName capitalize.
 prefix := (value at: 1) isVowel ifTrue: ['an'] ifFalse: ['a'].
 value := prefix, value.
 ^aStream
 nextPutAll: ': '; nextPutAll: value; crtab; nextPutAll:
aVariableName;
 nextPutAll: ' := '; nextPutAll: value; contents

Meta-Programming 7

To use this mechanism, when you define a new class, replace the subclass: keyword with

mySubclass:. When you accept the class definition, the new protocols will be created and public and private

accessors will be created for every instance variable. For example, the first two lines of the class definition might

look something like the code shown below. Following is an example of one of the accessors that was created for

age.

Object mySubclass: Person
 instanceVariableNames: 'name age address '

Person>>myAge: anAge
 age := anAge

A brief overview of other capabilities
There are a wealth of methods that do interesting things. You can find all the immediate subclasses of a class

(subclasses), the whole hierarchy of subclasses (allSubclasses), the class itself with all it subclass

hierarchy (withAllSubclasses), and the corresponding superclass methods (superclass,

allSuperclasses, and withAllSuperclasses).

You can see if a class is identically equal to another class or is a subclass of it (includesBehavior:), if

it is simply a subclass (inheritsFrom:), or if it is an immediate subclass (isDirectSubclassOf:).

You can look at all the instances of a particular class (allInstances), all the objects that reference a

particular object (allOwners and allOwnersWeakly:). (If you do either of these, you might want to do

ObjectMemory garbageCollect beforehand, to eliminate any unused objects that are waiting to be

garbage collected.) You can iterate over all the subclasses of a class (allSubclassesDo:), all the instances

of a class (allInstancesDo:), and all the instances of a class's subclasses (allSubInstancesDo:).

You can look at all the methods a class defines (selectors), and all the methods it understands, including

inherited methods (allSelectors). You can see if an object understands a particular message

(respondsTo:) and whether a particular method is defined by a class (includesSelector:). You can

even find which class in the hierarchy defines a method that your object responds to

(whichClassIncludesSelector:).

You can look at all the instance variable names defined by a class (instVarNames), all the instance

variable names that it both defines and inherits (allInstVarNames), and similarly for class variable names.

You can find the number of instance variables (instSize), the index for a particular instance variable name

(instVarIndexFor:) and the value of an instance variable for a given index (instVarAt:).

Tread lightly when doing programming that involves knowledge of class structure. It can be useful, but

should not be used as a substitute for good application design.

	Meta-Programming
	Classes and Metaclasses
	Adding general class side behavior

	Examples we've seen in other chapters
	Examples we promised in other chapters
	Finding classes with a specified protocol
	allInstancesAndSubInstances
	Creating accessors for instance variables

	A brief overview of other capabilities

