
27 - 1 8/29/04

Copyright © 1996 Alec Sharp

Chapter

27
Extending the Application Framework

The basic VisualWorks ApplicationModel framework is an excellent way to approach building an

application with user interface screens. However, as with most things, it's possible to extend the framework to make

the development of user-interface oriented applications easier. In particular, Tim Howard has written extensions to

the ApplicationModel framework that he has described in various articles and in a book.

The extensions consists of several new classes: ExtendedApplicationModel, ExtendedSimpleDialog,

DomainObject, DomainAdaptor, and CollectionAdaptor. The code for all these extensions is in the Smalltalk

Archives. It's worth spending some time looking into using these extensions in your application.

Advantages of the extended framework
If you subclass your applications off ExtendedApplicationModel rather than ApplicationModel, you get a

lot of benefits in terms of cleaner and simpler code. Let's look at a few of them here.

Simpler code
ExtendedApplicationModel allows you to do everything you could do with ApplicationModel, but makes

much of it a lot easier. Here are some examples written first with ApplicationModel functionality, and second with

ExtendedApplicationModel functionality.

ApplicationModel
(self builder componentAt: #saveAB) enable.
(self builder componentAt: #editAB) enable.
(self builder componentAt: #cancelAB) disable.

ExtendedApplicationModel
self enable: #(saveAB editAB).
self enable: #(saveAB editAB) disable: #cancelAB

ApplicationModel
component := self builder componentAt: #employeeNameIF.
widget := (self builder componentAt: #employeeNameIF) widget.



27 - 2 8/29/04

Copyright © 1996 Alec Sharp

controller := (self builder componentAt: #employeeNameIF) widget controller.

ExtendedApplicationModel
component := self component: #employeeNameIF.
widget := self widget: #employeeNameIF.
controller := self controllerFor: #employeeNameIF.

Eliminating instance variables
ApplicationModel keeps an instance variable for each widget on the screen that will be handling input.

Each input field, each list, each table, and so on will require at least one instance variable. However, the builder also

keeps track of the data, so the instance variables are actually redundant. ExtendedApplicationModel uses the

builder's variables, allowing you to write applications without all the usual instance variables. To do this, it

provides new methods for creating ValueHolders and SelectionInLists. Here is an example of an access method

using the new functionality.

colors
^self

selectionInListFor: #colors
collection: self domain colors
selectionChange: #colorChanged

Notice that we are not initializing or returning an instance variable. The code is also smart enough to return

the SelectionInList if it exists, and to create a new one if it doesn't exist. It also registers as a dependent of the

SelectionInList, removing the necessity to set up the dependency using onChangeSend:to:.

DomainAdaptors
Recall that in Chapter 23, Model-View-Controller, we noted that the ApplicationModel framework

provides the concept of a subject channel which makes it possible to replace one domain object with another and

have all the AspectAdaptors now refer to the new object. The DomainAdaptor class provides additional mechanisms

for associating screens with domain objects. A DomainAdaptor is in effect an editor for a single domain object. You

can open a DomainAdaptor on a domain object, or simply open a DomainAdaptor, which creates a new domain

object. DomainAdaptors allow you to replace a domain object with a new domain object, and they update the data

in the views when you do so.

employeeDA := EmployeeUI open.
employeeDA := EmployeeUI openOn: anEmployee.
employeeDA domain: anotherEmployee.



27 - 3 8/29/04

Copyright © 1996 Alec Sharp

DomainAdaptors make it easy to create AspectAdaptors using no instance variables, and to register for

change messages at the same time. For example,

name
^self aspectAdaptorFor: #name changeMessage: #nameChanged

They also let you edit collections that are part of the domain object. For example, if the employee has a set

of skills that you want to add to or remove from as part of editing employee information, your skills method might

look like the following.

skills
^self

collectionAdaptorFor: #skills
addSelector: #addSkill
removeSelector: #removeSkill
changeMessage: #skillSelectionChanged

Other useful mechanisms
The ExtendedApplicationModel allows you to keep track of your parent application, which gives you the

opportunity to send it messages if necessary. You can open an application as a single instance, which ensures that

only one instance of the application will be created. If you try to open the application again, the single instance will

be expanded or raised if it was collapsed or behind another window. There are extensions to Dialogs, and

applications can be opened either as a Dialog (modal) or as a Application window (non-modal). There are many,

many more features than we've discussed here; this chapter simply touches on the extensions to the

ApplicationModel framework.

How to get the extended framework
Tim Howard has written articles on his frameworks extensions in several issues of The Smalltalk Report,

and his code is available in the Smalltalk archives (the file domain.st contains all the classes mentioned above). For

information about retrieving software from the Smalltalk Archives, see Chapter 35, Public Domain Code and

Information. However, I recommend that you purchase his book, The Smalltalk Developer's Guide to VisualWorks.

Tim Howard
The Smalltalk Developer's Guide to VisualWorks



27 - 4 8/29/04

Copyright © 1996 Alec Sharp

SIGS Books, ISBN 1-884842-11-9.
Prentice Hall, ISBN 0-13-442526-X

 The book covers the same material as his articles in The Smalltalk Report plus a lot more. It comes with a

diskette containing all the framework extensions and a significant amount of example code. In particular, it contains

an excellent tutorial that is run as a Smalltalk application, and which is invaluable in learning the VisualWorks

application framework and application widgets, as well as Howard's extensions to the framework. To me, the

tutorial itself is easily worth the price of the book.


