
Chapter

25
Hooks into the System

Smalltalk provides various hooks into the system that allow you to do additional processing on top of the

system provided behavior. The two areas that you are most likely to need these hooks are when copying objects

and when opening and closing an application with a user interface. However, as you dig through the class

library, you will inevitably find additional hooks, and these will inevitably give you ideas on new features you

can add to your applications, or new ways of structuring your applications. Since most of this chapter describes

user interface hooks, it is located in the User Interface section, despite the more general section on copying.

Copying

postCopy
When you send the copy message to an object, it returns a copy of itself. However, it returns what is known

as a shallow copy. You have a new instance of the object's class, but the instance variables in the copy contain

exactly the same object as in the original. So, if you change part of one of the instance variables in the copy, the

original gets the same change. Let's look at an example. Create two classes, Person and Address, as shown below

(you can find the code in the file copydemo.st). Add accessors to all the instance variables. If you then run

the code that follows, you will see that the street address of personOne is '221 Jones Court', which is not what

you want.

Object subclass: #Person
 instanceVariableNames: 'name address '

Object subclass: #Address
 instanceVariableNames: 'streetAddress city '

(address := Address new)
 streetAddress: '916 Smith Avenue';
 city: 'Boulder'.
(personOne := Person new)
 name: 'Alec Sharp';
 address: address.

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

Hooks into the System 2

personTwo := personOne copy.
personTwo address streetAddress: '221 Jones Court'.
personOne address streetAddress inspect

The reason for the unexpected result is that Object basically implements copy as shallowCopy. The

comment for shallowCopy says "Answer a copy of the receiver which shares the receiver's instance

variables." Fortunately, copy also provides a hook so that you can do further processing if a shallow copy is not

adequate. The actual implementation of copy looks like the following.

Object>>copy
 ^self shallowCopy postCopy

This gives us an opportunity to get the behavior we want by implementing the method postCopy, in which

we can make copies of the instance variables. When you implement postCopy, you should always do super

postCopy in case one of your superclasses needs to do something. We want to make a copy of the address

object so that we don't see the behavior shown above. If you implement the postCopy shown then rerun the

above code, you'll see that personOne still has a street address of '916 Smith Avenue'.

Person>>postCopy
 super postCopy.
 address := address copy

Other uses for postCopy include situations where you need to reset something after copying an object. For

example, when you copy an instance of Model, the copy does not get the list of dependents.

Model>>postCopy
 super postCopy.
 self breakDependents

(VisualWorks used to provide a deepCopy which recursively copied the instance variables as well.

However, the implementation could lead to problems when objects pointed to each other. In The Journal of

Object-Oriented Programming, September 1994, Wilf Lalonde and John Pugh describe a partial implementation

of a deepCopy.)

copyEmpty:
While it's not very common, you can create a class that is a subclass of a collection class, and add new

instance variables. As you add items to your collection, it may need to grow in size. The way this happens is that

a new collection object is created, the collection items are copied across, then the old object becomes the new

object. Unfortunately, your instance variables are not copied across into the new object. Here's an example that

illustrates this. The following code creates an instance of MyClass with a size of two, sets the two instance

variables, then adds three items to the collection. Since the collection has a size of two, it has to grow. You'll

need to write accessors for the variables.

Set variableSubclass: #MyClass
 instanceVariableNames: 'varOne varTwo '

coll := MyClass new: 2.
coll varOne: 1.
coll varTwo: 2.

Hooks into the System 3

coll add: 22; add: 33; add: 44.
coll inspect

When you inspect the collection, you will find that your instance variables no longer have the original values.

Fortunately there is a hook that lets you copy them across. To get them, you must override Collection's

copyEmpty: method. Here's an example of how you might do this.

MyClass>>copyEmpty: newCapacity
 ^(super copyEmpty: newCapacity)
 varOne: self varOne;
 varTwo: self varTwo;
 yourself

User interface opening
When you open an application (ie, a subclass of ApplicationModel), there are several places where you can

do additional processing. If you say MyApplication open, there are various hooks that give you the

opportunity to set things up according to the needs of your application. In order, the following messages will be

sent: initialize, preBuildWith:, postBuildWith:, and postOpenWith:. We'll look at each in

turn, but if you decide to override them, the first thing in your method should be a message send to super so that

the inherited method is also invoked. Here's what the fundamental interface opening method looks like. Notice

that this method directly does three of the message sends just mentioned.

ApplicationModel>>openInterface: aSymbol
 | spec |
 builder := UIBuilder new.
 builder source: self.
 spec := self class interfaceSpecFor: aSymbol.
 self preBuildWith: builder.
 builder add: spec.
 self postBuildWith: builder.
 builder window model: self.
 builder openWithExtent: spec window bounds extent.
 self postOpenWith: builder.
 ^builder

In what follows, we will use the example of a window with two action buttons and two input fields. The

action button actions are actionOne and actionTwo and their IDs are actionOneAB and actionTwoAB. The input

fields have aspects of inputOne and inputTwo, with IDs of inputOneIF and inputTwoIF. If you create the

window and the appropriate methods, you can see that how this all works. The code can be found in the file

hooks.st.

initialize
The initialize method is where we usually set up the various ValueHolders for the aspects, assuming we don't

want to use lazy initialization. In our example we will also set the field data.

MyClass>>initialize
 super initialize.
 inputOne := 'Text in input field one' asValue.
 inputTwo := 'Text in input field two' asValue

Hooks into the System 4

preBuildWith: aBuilder
The preBuildWith: method allows you to change the way that the user interface will be built. The

builder uses the spec that it is supplied with (usually #windowSpec, which is the symbol used if the open

message is sent), but in this method you can override the description contained in the spec. For example, we

want to change the way the action buttons work. Instead of invoking the specified method when the button is

invoked, we want to invoke the same method but with a different parameter. We can set this up in

preBuildWith:. We specify a block of code that should be executed when the button is pressed.

MyClass>>preBuildWith: aBuilder
 super preBuildWith: aBuilder.
 aBuilder actionAt: #actionOne put: [self doAction: #one].
 aBuilder actionAt: #actionTwo put: [self doAction: #two].

We could also set up blocks of code to build menus every time a menu button or a pop-up menu is selected.

This would allow us to dynamically change the menu based on varying conditions. For example, we might have

code such as the following, where buildInputOneMenu is invoked every time the user wants to see the

menu.

aBuilder menuAt: #inputOneMenu put: [self buildInputOneMenu]

postBuildWith: aBuilder
In postBuildWith: we can make changes to the interface after it's built but before it is displayed. In our

example, we will set the label of one button and the visibility of the other button. These actions can only be take

after the window is built.

MyClass>>postBuildWith: aBuilder
 super postBuildWith: aBuilder.
 self invisibleButton
 ifTrue:
 [(aBuilder componentAt: #actionOneAB) labelString: 'Yes'.
 (aBuilder componentAt: #actionTwoAB) beInvisible]
 ifFalse:
 [(aBuilder componentAt: #actionOneAB) labelString: 'No'.
 (aBuilder componentAt: #actionTwoAB) beVisible]

postOpenWith: aBuilder
In postOpenWith: we can do things that require the screen to already be displayed. In our example, we

specify which input field should have the focus — ie, which field the cursor should appear in, and where to

position the cursor in the field.

MyClass>>postOpenWith: aBuilder
 super postOpenWith: aBuilder.
 self invisibleButton
 ifTrue:
 [component := aBuilder componentAt: #inputOneIF.
 component takeKeyboardFocus.
 component widget controller selectAt: self inputOne value
size + 1]
 ifFalse:
 [component := aBuilder componentAt: #inputTwoIF.

Hooks into the System 5

 component takeKeyboardFocus.
 component widget controller selectAt: 1]

Support methods
Here is sample code for the other methods we need to write.

MyClass>> invisibleButton
 "Requires an instance variable called invisibleButton"
 ^ invisibleButton isNil
 ifTrue: [invisibleButton:= Dialog confirm: 'Invisible button?']
 ifFalse: [invisibleButton]

MyClass>>doAction: aSymbol
 Transcript cr; show: 'Action ', aSymbol

MyClass>>inputOne
 ^inputOne

MyClass>>inputTwo
 ^inputTwo

User Interface closing
Just as there are places you can add code during the creation and opening of windows, there are places you

can add code when they are closing. In particular, we will look at how you are informed that someone wants to

close the window, and that the window is closing. To close a window the usual way, you send the application a

closeRequest message (if you add a Cancel button using the Canvas Tool, you can put closeRequest in

the Action field in the Properties Tool). The closeRequest message puts a close event on the event queue, as

if the user had used the native window manager facilities to close the window. If you are writing a normal

application subclassed off ApplicationModel, both changeRequest and requestForWindowClose

messages will be sent by the window controller (an ApplicationStandardSystemController). The window will

only be closed if both messages return true. The actual message sends are shown below, and although

requestForWindowClose is sent to self (the controller), the requestForWindowClose method sends

the same message on to the application model. Thus, the application model is sent both changeRequest and

requestForWindowClose.

model changeRequest ifFalse: [^false].
self requestForWindowClose ifFalse: [^false].

Your application may need to add its own check to see whether it's okay to close the window. Typically, you

will check that the user is not in the middle of editing data. If there are uncommitted changes, you'll probably

prompt the user to save them. To do this checking, you can override either changeRequest or

requestForWindowClose. Your method should first send the same message to its superclass, then do any

application specific checking, returning true if it's okay to close the window, and false otherwise.

changeRequest
The changeRequest message is sent when something wants to change and is trying to find out if it's okay

to change. In our case the change is quite drastic — we want to close the window. The window's controller sends

Hooks into the System 6

changeRequest to the application model, asking if the application model gives permission for the change (ie,

the close). The inherited implementation of changeRequest sends an updateRequest message to all the

dependents of the application model, asking whether they think that it's okay to change. So, changeRequest

just checks with all the application model's dependents.

We can override changeRequest to add our application checks, making sure that the superclass's method

is still invoked. Returning true now means that both the application model and its dependents agree to the

change. Here's an example.

MyClass>>changeRequest
 super changeRequest ifFalse: [^false].
 ^self hasUncommittedChanges
 ifTrue: [self checkCloseWithUser]
 ifFalse: [true]

In fact, returning true simply says that from the perspective of the application model and its dependents, it's

okay to change. The controller will then check with the keyboard processor to make sure that there are no fields

needing validation. So it's possible the window will not close even though you return true. In VisualWorks 1.0,

overriding changeRequest was the standard technique for adding your own logic to see if the window may

be closed. However, since the window might remain open even though you return true, it's a better technique to

override requestForWindowClose, which was added in VisualWorks 2.0.

requestForWindowClose
After sending changeRequest, the window controller then sends the requestForWindowClose

message to its application model, which checks to see if the keyboard processor thinks it's okay to close the

window. If the keyboard processor returns true, no other checking will be done, and the window will be closed.

This is therefore a good time to do your application checking. Here's an example.

MyClass>>requestForWindowClose
 super requestForWindowClose ifFalse: [^false].
 ^self hasUncommittedChanges
 ifTrue: [self checkCloseWithUser]
 ifFalse: [true]

Overriding requestForWindowClose is now the recommended technique for adding your own

checking to see if the window is allowed to close.

noticeOfWindowClose:
When a window closes, its application model will be sent the message noticeOfWindowClose:. If your

application inherits this from ApplicationModel, the method simply returns self. However, you can override

noticeOfWindowClose: if you want to do something specific when the window closes. For example,

when I open windows from other windows, I set up a parent-child relationship. This is different from the

VisualWorks master-slave relationship because in the master-slave relationship a slave can't be a master in

another relationship, whereas a window can simultaneously be the child of one window and the parent of another

window. When a parent window closes, it closes all its children. Here's an example of how this works, using the

noticeOfWindowClose: message.

Hooks into the System 7

MyApplication>>requestForWindowClose
 ^super requestForWindowClose
 ifTrue: [self childApplicationsCanClose]
 ifFalse: [false]

MyApplication>>childApplicationsCanClose
 "We don't know if child applications will override changeRequest
 or requestForWindowClose, so we'll check both."
 | childrenThatCantClose |
 childrenThatCantClose := childApplications
 select: [:each | each changeRequest == false
 or: [each requestForWindowClose == false]].
 ^childrenThatCantClose isEmpty

MyApplication>>noticeOfWindowClose: aWindow
 super noticeOfWindowClose: aWindow
 self parentApplication notNil
 ifTrue: [self parentApplication removeChild: self].
 childApplications do:
 [:each | "Don't send closeRequest to subcanvases"
 each builder window == self builder window
 ifFalse: [each closeRequest]]

In Chapter 27, Extending the Application Framework we talk about extending the VisualWorks

ApplicationModel. The code shown above extends the extensions we discuss in Chapter 27 and can be found in

the file framewrk.st.

	Hooks into the System
	Copying
	postCopy
	copyEmpty:

	User interface opening
	initialize
	preBuildWith: aBuilder
	postBuildWith: aBuilder
	postOpenWith: aBuilder
	Support methods

	User Interface closing
	changeRequest
	requestForWindowClose
	noticeOfWindowClose:

