
Chapter

20
Error Handling

The usual way of handling errors in a procedural language such as C is to return a status from a function call,

then check the status in the calling function. If there is a problem, you may take some action in the caller, or

more usually, you return from the caller, passing back the status code and possibly logging an error message.

Typically, you end up with a lot of code whose sole purpose is to handle errors. It’s not uncommon for the

majority of the code in a robust application to be associated with error handling.

Smalltalk makes it much easier to focus on the domain problem you are trying to solve by eliminating much

of the error handling code. It does this by providing a wonderful mechanism called exception handling. We'll

start by taking a look at basic exception handling, then, since there are a lot of additional capabilities, we'll look

at these finer points later in the chapter.

The general idea behind exception handling is that you assume everything works, and so you don't check

return values. Of course, sometimes things will go wrong. Perhaps you try to divide by zero, or perhaps you try

to write to a read-only file. These events will raise an exception, which makes its way up the stack, looking for a

signal that can handle it. Rather than checking a status at every level in the call stack (ie, in every method), you

simply need to have an exception handler at the appropriate level in the code where you can take some action.

This is illustrated in Figure 20-1.

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

Error Handling 2

Signal

methodOne

methodTwo

methodThree

methodFour

methodFive

signal raise

Exception

The same signal both raises and traps the
exception. The exception bubbles up the
stack looking for a signal to handle it.

Figure 20-1.
The exception handling mechanism.

To trap, or handle, an exception, you send the handle:do: message to an instance of Signal. This message

takes two blocks as parameters. The parameter to do: is the block that you want to execute, usually consisting

of several lines of code. The parameter to handle: is the block that will be executed if an exception is trapped

as a result of a signal being raised while executing the do: block. This block takes one parameter, the exception

that was raised. The exception contains information about the error which you can use in the handler block.

You'll usually see the exception parameter called :ex. Let's take a look at how code might look when using an

exception handler.

MyRequest>>processYourself
 | tape drive |
 MySignals appSignal
 handle: [:ex | self myHandleFailure: ex]
 do:
 [self myCheckRequest.
 tape := self myReserveTape.
 drive := self myReserveDrive.
 tape mountYourselfOn: drive.
 self myRespondSuccess].
 self myReleaseTape: tape.
 self myReleaseDrive: drive

MyRequest>>myReserveTape
 self tapeName isReserved ifTrue:
 [MySignals appSignal raiseWith: #tapeBusy].
 ...code to reserve the tape...

In myReserveTape, we raise an exception if the tape is already reserved. In processYourself we

have a signal to trap these raised exceptions. You'll see that we don't explicitly test the results of any of the

message sends in processYourself, relying on the signal to trap the errors. This makes the code much more

compact and easy to read. It allows us to focus on the problem we are trying to solve, rather than on the

possibilities that things will go wrong.

Let’s now look at an example of how you would trap an exception raised by the system classes. The classic

example is division by zero. You can find the signals in the Signal constants protocol on the class side of

ArithmeticValue. (In Chapter 29, Meta-Programming we see how to find all the classes with a specified

protocol.) If you evaluate the following code, you will get a message displayed on the Transcript.

Error Handling 3

ArithmeticValue divisionByZeroSignal
 handle: [:ex | Transcript cr; show: ex errorString]
 do: [4 / 0].

Signals and Exceptions
There are two classes that play a role in exception handling: Signal and Exception. The basic idea is that a

signal both raises and traps an exception. When a signal raises an exception in a method, the exception code

works its way up (unwinds) the message stack looking for a signal to handle it. Signals that can handle the

exception are the signal that raised the exception, and any signal in the raising signal's parent hierarchy (more on

this later). If the exception can't find a signal to handle it, it asks Object noHandlerSignal to raise an unhandled

signal exception. If this new exception can't find a handler, it invokes the EmergencyHandler. The default

EmergencyHandler puts up a Notifier window that displays information about the original exception and gives

you the option to bring up a Debugger.

The beauty of this scheme of raised exceptions and exception handlers is that you don’t have to have lots of

error handling code. Instead, at the level that knows what action to take in response to an error, you create the

exception handling code. Then if a lower level method comes across an error, it simply raises an exception.

Creating your own signal
Exceptions can be raised by the system classes, and your code must be able to handle these. However, for

your application, you should raise application defined signals and trap them with application defined signals.

When you write your application, you may be several methods deep and realize that you can’t continue because

of some error. Perhaps you have bad data, perhaps some resource you need is already in use, perhaps some

condition has not been satisfied. In any of these cases, you will need to raise an exception that you will trap at a

higher level. So you must first create a signal to use.

The easiest way to create a signal is to do Signal new, which creates a new signal with Object errorSignal

as its parent. An alternative way to do the same thing (and, in fact, Signal new does this) is Object

errorSignal newSignal, which we could also do with self errorSignal newSignal if our class

is subclassed from Object. We'll talk more about the details of signal creation later. Now let's create a signal that

we can use in our application. We have a couple of choices: we might create several signals, each appropriate for

a specific situation, or we might create a more general signal that the whole application can use.

A single application signal
One approach is to create a single signal for the whole application. This works well in applications where the

response to an error is the same, no matter what the error. I've used this approach in applications where we were

processing requests from other computers, with no user interaction. If we detected an error, we simply rejected

the request, passing back an error number and error message in the response. Here's an example of how we might

create and access such as signal.

MySignals class>>setValues
 (AppSignal := Object errorSignal newSignal)
 notifierString: 'Application Error:';
 nameClass: self message: #appSignal

Error Handling 4

MySignals class>>appSignal
 ^AppSignal

Multiple application signals
Applications that are more user-interface intensive usually have a need for multiple application signals. For

example, you might have one or more signals for file errors, one for validation errors, and so on. Then, for

example, any time you try to validate something you assume that the validation works unless a validation signal

is raised. To create and access these signals we might have something like:

MySignals class>>initialize
 AppSignal := Object errorSignal newSignal notifierString:
'Application Error:'.
 ValidationSignal := AppSignal newSignal notifierString:
'Validation Error:'.
 FileSignal := AppSignal newSignal notifierString: 'File Error:'.
 FileNotFoundSignal := FileSignal newSignal notifierString: 'File
Not Found:'.

MySignals class>>fileNotFoundSignal
 ^FileNotFoundSignal

MySignals class>>validationSignal
 ^ValidationSignal

Note the signal hierarchy we set up in the initialize method. AppSignal is our top level signal, with

ValidationSignal and FileSignal as children. FileNotFoundSignal is a child of FileSignal. Thus we can trap file

not found errors with any of FileNotFoundSignal, FileSignal, AppSignal, or Object errorSignal.

Overriding errorSignal
Sometimes you may decide to override errorSignal to provide different catchall error handling behavior

for a class or for a hierarchy of classes. If you override errorSignal, you'd like your new behavior to be

invoked rather than the default behavior. For example, suppose you have overridden errorSignal for

MyClass and you are sending a message to an instance of MyClass that may generate any number of exceptions.

You would ask your class rather than Object to handle the error. Your handling code will now look like the

following.

anInstanceOfMyClass class errorSignal
 handle: [:ex | ex return]
 do: [anInstanceOfMyClass processYourself].

There are two points to note with this technique. First, you can use it as a standard technique because if a

particular class hasn't overridden errorSignal it will inherit the default errorSignal from Object.

Second, the behavior you write in your errorSignal method must be able to handle signals that are generated

by any object since you can't guarantee that the instance of MyClass is the only object that will raise an

exception.

Another approach is to always use self errorSignal as the catchall signal handler rather than Object

errorSignal. This gives you the opportunity to override the catchall behavior in the class sending the

Error Handling 5

message rather than using the behavior inherited from Object. If you don't override errorSignal, then it is

simply inherited.

MyClass>>doSomething
 self errorSignal
 handle: [:ex | ex return]
 do: [self myDoSomethingElse].

Central error messages
Let's take a look at what we might do in the myHandleFailure: method in the example at the beginning

of the chapter. We have the exception since it was passed in. Now we need to report or log the error condition.

How we do this is very application specific, but let's look at one way of transforming the exception into

something a human would understand.

We do this with a central error message facility that contains the error number and error text. The text will

directly tell what is wrong, and the number will allow the user to consult an error codes manual for more

information about what this error means. In the class side initialization of MyErrorMessages we create an

IdentityDictionary containing instances of Association, each association being a message number and the

corresponding message text. The dictionary keys are the symbols that are passed as parameters when raising the

signal. To retrieve the message number and the message text, we send numberFor: and textFor:

respectively. (You can find code for this example in the file errormsg.st.)

MyErrorMessages class>>initialize
 "self initialize"
 (Messages := IdentityDictionary new)
 at: #tapeNotFound put: 1 –> 'The specified tape could not be
found';
 at: #tapeBusy put: 2 –> 'The tape is in use'.

MyErrorMessages class>>numberFor: aSymbol
 ^(Messages at: aSymbol ifAbsent: [0 –> nil]) key.

MyErrorMessages class>>textFor: aSymbol
 ^(Messages
 at: aSymbol
 ifAbsent: [nil –> 'Code ', aSymbol printString, ' not found'])
value.

Now we just need to see how we would use this message facility when handling the failure. In

myHandleFailure: we extract the error number and the error text from the centralized error message

facility. Next, we append any additional text that was given when the signal was raised. Then we take some

domain specific action to report the error.

MyRequestClass>> myHandleFailure: anException
 number := MyErrorMessages numberFor: anException parameter.
 text := MyErrorMessages textFor: anException parameter.
 anException localErrorString notNil ifTrue:
 [text := text, ' – ', anException localErrorString].
 now do something domain specific with the number and text
....

Error Handling 6

In this example, we generate the message text when we trap the exception. This is acceptable in situations

where we don't need to add information about the values of the objects at the time of the error. In other situations

we may need to also log or display the values of objects. To pass back information, we could create an

ExceptionParameter class that contained the error symbol, a collection of parameters, and possibly an additional

error string. We would then raise the exception with raiseWith:, passing our ExceptionParameter as the

parameter, and have the exception handling code construct an error message from the ExceptionParameter. (An

alternative approach is to use the mechanisms described below in the section on Parameter Substitution, and

have the exception create a fully formed string.)

The scheme described above is fairly simple since we only have error numbers and error text. In a production

system we would probably have a MyMessages superclass that defined most of the behavior, then

MyErrorMessages and MyInformationMessages as subclasses. We would also store more information with each

message, such as the message severity and message categorization to help route error responses and error

reporting. One approach would be to code this information into the message string, but this would not be very

object-oriented. A more powerful and more object-oriented approach would be to create MyMessage objects to

put in the dictionary, rather than instances of Association. We might have something like the following. It would

be straightforward to write methods to extract the message text and categorize and sort it for easier viewing.

MyErrorMessages class>>initialize
 "self initialize"
 (Messages := IdentityDictionary new)
 at: #tapeNotFound
 put: (MyMessage
 number: 1
 severity: #warning
 routing: 'TN'
 text: 'The specified tape could not be found');
 at: #tapeBusy
 put: (MyMessage
 number: 2
 severity: #warning
 routing: 'TN'
 text: 'The tape is in use').

The severity codes might include #information, #warning, #error, #fatal, while the routing information tells

what type of message this is. In this example, T refers to tapes and N refers to the non-existence of things. We

might further encapsulate information and create a specific routing object rather than code routing information

into a string. We might also create subclasses of MyMessage for errors and warnings (for example,

MyErrorMessage and MyWarningMessage). By having subclasses that encapsulate the information, we could

later decide to encapsulate behavior specific to the message type.

The severity and routing information allows clients of the messaging system, such as other computers, the

error log, and the system console, to register for the types of messages they want to receive. If an error message

is created in response to a request, the message would be sent to the originator of the request. It would also be

sent to a central message router that would distribute it to all message clients whose registration criteria matched

the information in the message.

If you are using ENVY, you might consider using the provided error reporting mechanism, which uses the

ErrorReporter class. There is more about ENVY in Chapter 34, ENVY.

Error Handling 7

More on Signal Creation
We've seen the basics of creating a signal, so now let's take a look at some of the details. Signals can be

proceedable or non-proceedable, you can specify the string to be displayed in a Notifier window, and you can

specify the message that will return the signal. Additionally, we'll take a look at parents of signals, and how

signal trapping works within the parent hierarchy.

Specifying the proceedability of the signal
Signals can be proceedable or non-proceedable. A proceedable signal allows the exception handler to

proceed from the point where the exception was raised. In general you won't do this and so won't care about this

feature, but it's useful to know. When you send newSignal, you inherit the proceedability of the parent signal.

Object errorSignal is proceedable, so Object errorSignal newSignal gives you a new

proceedable signal with Object errorSignal as its parent. If you care about the proceedability, you can

use the newSignalMayProceed: message with a Boolean parameter that specifies whether the signal is to

be proceedable. For example, Object errorSignal newSignalMayProceed: true gives you a

proceedable signal. If you want to be able to proceed from an exception, you must raise exceptions by sending

your signal a message from the raiseRequest family rather than the raise family.

Notifier strings and inspector information
There are two other aspects to consider when creating a new signal. If you send notifierString:

aString to an instance of Signal, you set the default string that is returned by the errorString message —

the string that will be displayed at the top of any Notifier window raised by this signal. If you send

nameClass: aClass message: aSymbol to the signal, you are by convention specifying that you can

get this signal by sending the message specified by aSymbol to the class specified by aClass (this is really just a

documentation aid; you'll still have to write the method that returns the signal). Additionally, aClass and

aSymbol are stored in instance variables in the signal and give inspectors more information to display. For

example, you might create a signal by doing the following, also remembering to write the appErrorSignal

method.

(AppErrorSignal := self errorSignal newSignal)
 notifierString: 'Application Error: ';
 nameClass: self message: #appErrorSignal

Parents handling signals
Earlier we trapped a division by zero error using ArithmeticValue divisionByZeroSignal. Now

let's trap the same error with the parent signal, ArithmenticValue domainErrorSignal. Then we'll

trap the signal with its parent, ArithmeticValue errorSignal, then with its parent, Object

errorSignal. You can see how the signals are created from their parents in the class initialization of

ArithmeticValue.

ArithmeticValue domainErrorSignal
 handle: [:ex | Transcript cr; show: ex errorString]
 do: [4 / 0].

Error Handling 8

ArithmeticValue errorSignal
 handle: [:ex | Transcript cr; show: ex errorString]
 do: [4 / 0].

Object errorSignal
 handle: [:ex | Transcript cr; show: ex errorString]
 do: [4 / 0].

Since we also know how to create new signals of our own, let's see another example of how the parent of a

signal can trap exceptions raised by the signal, but other signals derived from the same parent (ie, siblings of the

signal) can't trap the exception. In our example, parent1 and parent2 are two signals with the same parent,

Object errorSignal. child2 has parent2 as its parent. If we ask parent1 to trap an exception raised by child2, it

doesn't. If we ask parent2 to trap the exception, it does. Try the code below twice, once with parent1 handling the

exception and once with parent2 handling it. Moral of the story: an exception can be trapped by the signal that

raised it, or by its parent or grandparent,, up to Object errorSignal.

parent1 := Object errorSignal newSignal notifierString: 'Error1:'.
parent2 := Object errorSignal newSignal notifierString: 'Error2:'.
child2 := parent2 newSignal.
parent1
 handle: [:ex | Transcript cr; show: 'in handler']
 do: [child2 raise].

Signal collections
If your application can raise several different signals but the way of dealing with the exception is the same

for all the signals, you have two alternatives. You could use a generic signal, such as Object errorSignal, or a

common parent signal to handle all the possible exceptions. Or, if you know exactly which signals can be raised,

you can use a SignalCollection. To do this, add the signals you want to trap to the SignalCollection, then send

handle:do: to the SignalCollection. When a signal is raised, it looks at each signal in the collection until it

recognizes one. You can build the SignalCollection in one place then reuse it in different places.

Try the following example twice, reversing the order of the statements in the do: block. You'll get a

different exception reported on the Transcript.

sigCollection := SignalCollection
 with: Dictionary keyNotFoundSignal
 with: Dictionary valueNotFoundSignal.
sigCollection
 handle: [:ex | Transcript cr; show: ex errorString]
 do:
 [Dictionary new at: 3.
 Dictionary new keyAtValue: 4].

How useful are SignalCollections? I've worked on applications where they were not very useful because it

was easier to have the top level application signal or Object errorSignal do the trapping. I've also worked on

applications where we used SignalCollections because we needed to be specific about the errors we were

trapping. The VisualWorks system classes use a SignalCollection only two times, and one of those is an empty

collection!

Error Handling 9

Handler lists / collections
If you have a set of signals you want to trap but you want to take different actions for each exception, you

can use a set of nested handlers. For example,

signalOne
 handle: [:ex | some code]
 do: [signalTwo
 handle: [:ex | some code]
 do: [signalThree
 handle: [:ex | some code]
 do: [some application code]]

If there are a lot of signals you want to look for, the code will get pretty messy. The HandlerCollection

(VisualWorks 2.0) or HandlerList (VisualWorks 2.5) class provides a shorthand way of doing the same thing.

The handlers will still be nested when the code is executed, but the code is a lot tidier and is therefore easier to

understand and maintain. Here's the above example coded using a HandlerList — note that since the handlers are

really nested, the last signal added is the first signal that will get a chance to trap the exception. So put the most

general signals first and the most specific last. Again, you can build the HandlerList in one place and reuse it in

different places.

(handlerList := HandlerList new)
 on: signalOne handle: [:ex | some code];
 on: signalTwo handle: [:ex | some code];
 on: signalThree handle: [:ex | some code].
handlerList handleDo: [some application code].

How useful are HandlerLists? Again, I've worked on applications where we never used them. I've also

worked on applications where we wanted to trap errors generated by the file system, and give the user a different

message for each type of `error. In my experience, HandlerLists are most useful when handling errors generated

by the interaction of the Smalltalk image with the operating system, where the action you take depends on the

exact problem detected. The VisualWorks system classes use a HandlerList or HandlerCollection only once.

(In VisualWorks 2.5, HandlerCollection was replaced with HandlerList. Unless you have been subclassing

from HandlerCollection, the behavior is identical.)

Passing information with an Exception
Let's now look at the various ways of passing information with the exception. We'll examine only non-

proceedable signals; for proceedable signals you substitute raiseRequest for raise in all the examples.

To get a string describing the exception, you send the errorString message to the exception. The signal's

notifier string and the parameters to the raise message are all used when creating the error string, and in the

following examples, we will show how they affect the error string. Notifier windows display the value returned

by errorString.

raise
The raise message simply raises an exception, passing back no information.

Error Handling 10

raiseWith: aParameter
The raiseWith: aParameter message passes back information in the parameter. To retrieve the

parameter, send parameter to the exception. In our example above, we passed the symbol #tapeBusy as the

parameter, and then used it to look up the error message.

raiseErrorString: aString
The raiseErrorString: aString message passes back a string. You can access the string by sending

localErrorString to the exception. The value returned by errorString depends on spaces in aString.

The rule is:

aString has no space in front - replace notifier string

aString has a space in front - append aString to notifier string

raiseWith: aParameter errorString: aString
The raiseWith: aParameter errorString: aString message passes back both a parameter

and a string. You can access the parameter by sending parameter to the exception and the string by sending

localErrorString to the exception. The value returned by errorString depends on spaces in aString.

The rule is:

aString has no space in front - replace notifier string

aString has a space in front - append aString to notifier string

aString has a space at the end - append parameter to aString

Parameter Substitution
At the time you raise an exception you have access to all the information that is relevant to the error.

VisualWorks provides a parameter substitution mechanism where you can raise an exception, passing a template

string and a collection of parameters to be substituted. (If you are using a centralized messaging facility, you

could get the message template from it, using a symbol as the lookup key.) The exception substitutes the

parameters, generating a fully formed message. However, my preference would be to create the

ExceptionParameter object that we discussed above since this provides more power and flexibility.

The parameter substitution mechanism is different in VisualWorks 2.0 and 2.5, so we'll look at both. In both

messages below, the template is a string with embedded formatting information. The parameter is expected to be

a collection, where each element of the collection corresponds to a formal parameter in the template string.

Sending parameter to the exception will return the parameter collection, and sending localErrorString

will return the expanded string. The errorString message conforms to the space rules shown in

raise:ErrorString: above.

raiseWith:errorTemplate:
The raiseWith: aParameterCollection errorTemplate: aString message is the

parameter substitution message used in VisualWorks 2.0. The template string contains embedded percent signs

Error Handling 11

(%). The string will be expanded before the handler gets to trap the exception, with the % being replaced by the

printString representation of the appropriate collection element. For example, the following brings up a

Notifier window with the message: Unhandled exception: Received bad value 3 and bad value 'm:\temp'.

Object errorSignal
 raiseWith: #(3 'm:\temp')
 errorTemplate: 'Received bad value % and bad value %.'

raiseWith:errorPattern:
The raiseWith: aParameterCollection errorPattern: aString message is the parameter

substitution message used in VisualWorks 2.5. It provides a new, more powerful parameter substitution

mechanism using a new family of messages (expandMacros). For more information on the parameter

substitution options, see Chapter 12, Strings. For example, the following brings up a Notifier window with the

message: Unhandled exception: Received bad value 3 and bad value m:\temp.

Object errorSignal
 raiseWith: #(3 'm:\temp')
 errorPattern: 'Received bad value <1p> and bad value <2s>.'

Handling the exception
There are several ways to handle the exception in the handle: block of the handle:do: message.

Remember that the block will look something like [:exception | some code], where the exception is

passed in as the parameter. If you hit the right bracket of the handle block, the return value of the block (ie, the

value of the last statement executed) will be the value returned from handle:do:. If there is no code in the

block, the exception will be returned.

Alternatively, you can send a message to the exception as the last thing in the block — this is the preferred

approach because it gives the exception a chance to gracefully unwind the stack. The messages you can send are

return, returnWith:, reject, restart, restartDo:, proceed, proceedWith:, and

proceedDoing:. We will look at some of these messages. For the others, you'll have to examine the system

code and read the manuals.

return
The return message returns nil from the handle block. It's the same as doing returnWith: nil. Note

that return leaves you in the method containing the exception handler. If you don't want to do anything in the

handler block, it's good practice to do ex return. The following code prints nil to the Transcript.

Transcript cr; show:
 (self errorSignal
 handle: [:ex | ex return]
 do: [self errorSignal raise]) printString.

Error Handling 12

returnWith:
The returnWith: message allows you to set a value as the return value from handle:do:. The

parameter to returnWith: will be the return value. Note that returnWith: leaves you in the method. The

following code prints 3 to the Transcript.

Transcript cr; show:
 (self errorSignal
 handle: [:ex | ex returnWith: 3]
 do: [self errorSignal raise]) printString.

reject
The reject message allows you to take some action then reject the exception, or reject the exception based

on some criteria. In the following example, in the handle block we print to the Transcript then reject the

exception. Since the exception is rejected, it continues to look for a handler, but doesn't find another one, so it

raises a Notifier window.

self errorSignal
 handle: [:ex |
 Transcript cr; show: ex errorString.
 ex reject]
 do: [self errorSignal raiseWith: 3 errorString: 'Error '].

restart
The restart message allows you to figure out what caused the exception to be raised, fix the condition,

then restart the handle:do: expression. The following code gives you a chance to correct the error that you

get if you divide by zero.

self errorSignal
 handle: [:ex |
 Dialog warn: 'You divided by zero'.
 ex restart]
 do: [| answer |
 answer := Dialog request: 'Divide 4 by what?' initialAnswer:
'0'.
 Transcript cr; show: (4 / answer asNumber) printString].

restartDo:
The restartDo: message allows you to figure out what caused the exception to be raised, possibly fix the

condition, then restart execution with a different code block. While you can use ^ in a handle: block to return

from the method, restartDo: is the recommended way of doing this. For example, ex restartDo:

[^nil] exits the method, returning nil.

MyClass>>myMethod
 someSignal
 handle: [:ex | ex restartDo: [^nil]]
 do: [some code that raises an exception]

Error Handling 13

self error:
Another way to raise an exception is to send the error: message, passing a string as a parameter. By

default this raises a Notifier window and allows you to bring up a Debugger. To change the default behavior, you

can override error:. If you are using the application signal mechanism described above and you have a single

centralized message file in your image, you could write, for example, Object>>error:args:string: to

take a symbol, an array of arguments, and an additional string as arguments. It would handle raising the

exception in the appropriate way. To invoke it you would do something like

self error: #tapeNotFound args: (Array with: tapeName with:
driveName) string: nil.

A more elegant approach would be to have your own subclass of Object, say MyObject, and to defined

error:args:string: on MyObject. All application objects that used to be subclassed from Object would

now be subclassed from MyObject.

doesNotUnderstand:
If your code sends a message that is not understood, eventually the doesNotUnderstand: message will

be sent. The default doesNotUnderstand:, implemented by Object, raises a Notifier window. You can

override doesNotUnderstand: if you want to do anything specific such as logging an error.

valueNowOrOnUnwindDo:
Suppose you have code that should be executed both after normal completion of a sequence of statements,

and if an exception is raised. You can wrap the regular code in a block and send it the message

valueNowOrOnUnwindDo:, passing as the parameter a block containing the code you always want executed.

A good example of this is closing a file. You'd like to close the file after successfully reading it, and also if an

exception is raised while reading the file. Here's an example of how to use this technique.

stream := self myFilename readStream.
[self readFile: stream]
 valueNowOrOnUnwindDo:
 [stream close].

Emergency Exception Handler
If an exception can't be handled, the EmergencyHandler will be invoked. The default EmergencyHandler is

defined during class initialization for Exception, and it raises a Notifier window. You can change the

EmergencyHandler by sending Exception the class message emergencyHandler:, where the parameter is a

block that takes two arguments: the exception and the context. For example, try the following (after saving any

changes you want to keep).

Exception emergencyHandler:
 [:ex :context |
 Dialog warn: 'Quitting: ', ex errorString.
 ObjectMemory quit].
3 next.

Error Handling 14

Once the emergency handler has done its thing, it attempts to re-execute the code that caused the exception.

So, unless the emergency handler quits the Smalltalk image or starts a new thread of execution, you will end up

in an infinite loop.

noHandlerSignal
As we saw earlier, if an exception can't find a signal to handle it, it asks Object noHandlerSignal to raise an

unhandled signal exception. If this new exception can't find a handler, it invokes the EmergencyHandler.

However, the new noHandlerSignal exception is raised in the original context so we still have an opportunity to

trap it. To see an example of how this works, create a class with the following methods.

MyClass>>methodOne
 self methodTwo

MyClass>>methodTwo
 Signal noHandlerSignal
 handle: [:ex | Transcript cr; show: ‘methodTwo - ', ex
parameter errorString]
 do: [self methodThree]

MyClass>>methodThree
 self foo

If you now execute MyClass new methodOne, you will see the following on the Transcript:

methodTwo - Message not understood: #foo

The way this works is that methodThree sends the message foo, which is not implemented and thus

raises a messageNotUnderstood exception. The exception cannot find a handler for itself anywhere in the stack,

so it raises a noHandlerSignal exception, with the original exception stored in the parameter instance variable of

the new exception. In methodTwo we have a handler for the new exception, so we trap it and print out some

information. Note that since the noHandlerSignal exception contains the original exception in its parameter

variable, we have to print ex parameter errorString to get information about the original error.

Since the noHandlerSignal exception is raised only if no handler is found for the original exception, we

should be able to add an exception handler in methodOne, and have this invoked instead of the handler in

methodTwo. Modify methodOne to look like the following:

MyClass>>methodOne
 Object messageNotUnderstoodSignal
 handle: [:ex | Transcript cr; show: 'methodOne - ', ex
errorString]
 do: [self methodTwo]

If you now execute MyClass new methodOne, you will see the following on the Transcript:

methodOne - Message not understood: #foo

This technique gives us a way to create a “last resort” exception handler. By wrapping our code in a Signal

noHandlerSignal exception handler, we in effect say “I’ll give someone else an opportunity to handle any

exception that is raised, but if no one else wants to handle it, I’ll take care of it myself.”

Error Handling 15

Exceptions and Processes
Unfortunately, Smalltalk doesn’t do a good job of handling exceptions raised in forked processes. The

problem is that the when a process is forked, it gets its own stack context. When an exception is raised in a

forked process, it bubbles up the stack until it is either handled or it raises a Notifier window. Because the forked

process has a different context than the process that forked it, the exception never gets into the stack of the

forker.

This means that each forked process must have its own exception handling code if you want to trap

exceptions. What you do next, after trapping the exception, depends on the application and how it is structured.

If you have an application where there is a central dispatcher that gets requests and runs each request in its own

forked process, each request could have an instance of SharedQueue which it uses to communicate back to the

forker. For an example of this, see the section named Running tests that time out in Chapter 30, Testing.

For a more complete discussion of handling exceptions in a multi-process environment, see the two part

article, Cross-Process Exception Handling, by Ken Auer and Barry Oglesby in The Smalltalk Report, January

1994 and February 1994 (the first part is mis-titled, being called Cross-Purpose Exception Handling).

When to look for errors
There are different philosophies on when to look for error conditions. The idea has made it into software

engineering folklore that you should trap errors as soon as possible. This makes sense when we are dealing with

user interfaces because it's reasonable to let users know about errors as soon as possible (of course, it's even

better to write applications that prevent users making errors).

On the other hand, leaving aside user interface code, there's no reason to trap an error before it absolutely

needs to be detected. There's no reason to have a whole hierarchy of methods all checking the validity of the

same parameters. Most of them won't even care what the value is and will simply pass it on. It makes a cleaner

application to check the validity of things only when it's vital that they are valid. Then, and only then, raise an

exception.

	Error Handling
	Signals and Exceptions
	Creating your own signal
	A single application signal
	Multiple application signals
	Overriding errorSignal

	Central error messages
	More on Signal Creation
	Specifying the proceedability of the signal
	Notifier strings and inspector information
	Parents handling signals

	Signal collections
	Handler lists / collections
	Passing information with an Exception
	raise
	raiseWith: aParameter
	raiseErrorString: aString
	raiseWith: aParameter errorString: aString
	Parameter Substitution
	raiseWith:errorTemplate:
	raiseWith:errorPattern:

	Handling the exception
	return
	returnWith:
	reject
	restart
	restartDo:

	self error:
	doesNotUnderstand:
	valueNowOrOnUnwindDo:
	Emergency Exception Handler
	noHandlerSignal
	Exceptions and Processes
	When to look for errors

