
Chapter

19
The Dependency Mechanism

Perhaps the most magical thing about Smalltalk is the way it can automatically inform objects when other

objects change their state. It does this by allowing one object to register an interest in getting change messages

— by registering as a dependent of another object. The terminology is that the object registering an interest in

being informed of changes is called the dependent. The object that it is dependent on is called the parent.

Being able to use the dependency mechanism allows you to write code where an object registers as a

dependent then forgets about the parent completely. When the parent changes, the object will be informed and

can do whatever it needs to do but until that time, it can forget the parent even exists. From the perspective of the

parent, there is no need to programatically keep track of all the objects it needs to inform of changes. Instead, all

you have to do is have the parent tell itself that it has changed, and all the dependents will be automatically

notified. The dependency mechanism allows you to think of an application as a group of objects with wiring

between them. A major part of the application now boils down to determining the wiring between the objects.

How is this useful? There are many applications where one object is interested in the state of another object,

but the second object really doesn't care about the first object. It doesn't care whether there are many objects

interested in it, or no objects interested in it. One example would be a stock object that holds onto its current

trading price. There may be many applications interested in the price of the stock as it changes, but the stock

really doesn't care about those applications. Another example would be a factory floor. There may be many

monitors interested in the temperature and quantity of a liquid in a container, but the container has no interest in

the monitors. However, in the examples, the stock and the container have to let other objects know about

changes in their state.

There are two mechanisms for doing this. The interested objects could poll the stock and container objects,

asking for their state every few seconds. However, this has disadvantages. It takes computer resources to

constantly ask for information and this can add up if there are lots of objects polling. It also means that objects

aren't informed of changes in real-time. If an object polls every five seconds, it could be five seconds before it

discovers a state change, which could be disastrous on a factory floor. If it polls every hundredth of a second,

huge amounts of computing bandwidth will be used if you have many objects polling.

The other approach is to use the dependency mechanism. The interested objects register an interest in some

aspect of the stock or container's state, then wait until they are informed of changes. The stock or container

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

The Dependency Mechanism 2

doesn't know or care how many interested objects there are. Let's go through an example and see how the

dependency mechanism works.

We'll look at a simple example of a stock object and a watcher object that is monitoring the stock price. As a

stock is traded, the stock object gets updated with the latest price and the number of shares in the trade. Since we

don't know how many stock watchers will be monitoring any particular stock, and we don't know what they will

do with the values, we don't want the stock to be responsible for who to tell, and what to tell them. Instead, we

use the dependency mechanism. When the stock receives information about a new trade, it updates its instance

variables. When it updates an instance variable, it tells itself that it has done so. This act of telling itself that it

has changed triggers off the whole dependency notification mechanism.

We'll be showing several mechanisms and each example will be suffixed with a number. To execute the

example, type the following into a workspace, highlight it, and evaluate it (don't do it yet since we haven't yet

defined any classes and methods). Make sure that the number is appropriate for the example. The code for all

these examples can be found in the file depend.st.

| stock |
stock := MyStock1 new.
MyStockWatcher1 watchStock: stock.
stock traded: 200 price: 20.
stock traded: 100 price: 30

Basic Dependency
Here are the class definition and the instance methods for the stock class. Notice that instance variables are

changed through their accessors, and their accessors are responsible for telling the stock object what has

changed, and the old value. This is the key part of the parent's role in the dependency mechanism. By sending

changed:with:, a whole set of dependency code is invoked. The normal convention is to send the old value

since the dependent can send a message to get the new value, and may otherwise not know the old value.

Sometimes, however, you will see the new value sent. Whichever approach you take, be consistent.

Most of the methods of the stocks are defined in the superclass, MyStock. Where necessary we will override

this behavior. The accessor methods look very similar for each variable, so we'll write them just for price. The

other accessors will simply have different names for the variables.

Model subclass: #MyStock
 instanceVariableNames: 'price trade totalTraded '
 classVariableNames: ''
 poolDictionaries: ''
 category: 'DependencyTests'

MyStock>>traded: aCount price: aPrice
 self price: aPrice.
 self trade: aCount.
 self totalTraded: self totalTraded + aCount

MyStock>>price
 ^price isNil
 ifTrue: [price := 0]
 ifFalse: [price]

MyStock>>price: aPrice
 | oldPrice |

The Dependency Mechanism 3

 oldPrice := self price.
 price := aPrice.
 self changed: #price with: oldPrice

The stock watcher adds itself as a dependent of the stock (the parent) when it is created. To do this it simply

sends the stock an addDependent: message with itself as the parameter. Note that all the examples have the

same watchStock: method so we will define it in the superclass, MyStockWatcher. The stock watcher has no

instance variables so we are not showing the class definition.

MyStockWatcher class>>watchStock: aStock
 ^super new initialize: aStock

MyStockWatcher1>>initialize: aStock
 aStock addDependent: self

MyStockWatcher1>> update: aSymbol with: oldPrice from: aStock
 Transcript cr; print: thisContext; tab; print: aSymbol; tab.
 aSymbol == #price ifTrue:
 [Transcript
 nextPutAll: 'Price changed from: '; print: oldPrice;
 nextPutAll: ' to '; print: aStock price].
 Transcript flush.

We'll see the details of how this works in the next section, but briefly, the stock watcher is informed of all the

changes and has to decide if the change is one that it is interested in. Since our stock watcher is only monitoring

the price, it ignores all the other changes. If you run this code, you'll see that it is informed of several different

changes, but only reports on the price change.

Underlying mechanism
There are some very sophisticated mechanisms that allow dependency to work but they all rely on the very

basic mechanism of the parent sending itself a message from the changed family and the dependent being sent

a message from the update family.

The dependency mechanism is implemented by Object, which means that any object can register itself as a

dependent of any other object. When the parent changes, the most primitive mechanism for letting others know

is to send itself self changed. This method is implemented by Object so let's see what it does.

Object>>changed
 self changed: nil

Object>>changed: anAspectSymbol
 self changed: anAspectSymbol with: nil

Object>>changed: anAspectSymbol with: aParameter
 self myDependents
 update: anAspectSymbol
 with: aParameter
 from: self

As you see, if your object simply sends the changed message, this becomes transformed into a

changed:with: message with both parameters being nil. Usually you will provide more information by

sending either the changed: or changed:with: message. If you want to inform your dependents what

The Dependency Mechanism 4

changed, send changed: and pass a symbol as the parameter. When the dependent gets an update message, it

will be able to look at the symbol and decide if it is interested in the change. If you want to go further, send the

changed:with: message, passing the symbol and either the old or new value as parameters. This is what we

did in our stock watcher example, sending the old value.

(There are two conventions worth knowing about. First, it's possible to send anything as the argument to

changed:. However, by convention, most people send a symbol, the symbol being the selector that is used to

retrieve the new value. Second, the usual convention is to send the old value in changed:with:, on the

assumption that the dependents may no longer know the old value, but they can always get the new value by

asking the parent. However, some people prefer to send the new value since there is less message sending

involved. They take the approach that if any dependent cares about the old value they can store it, Whichever

approach you take — sending the old value or the new value — make sure you do the same thing everywhere so

that other programmers can rely on getting what they expect.)

Eventually the parent sends all its dependents the update:with:from: message, so the dependents must

implement one of the update family of messages. What if you don't care about all the parameters of

update:with:from:? Just as Object expanded changed up to changed:with:, it contracts

update:with:from: down to update.

Object>>update: anAspectSymbol with: aParameter from: Sender
 ^self update: anAspectSymbol with: aParameter

Object>>update: anAspectSymbol with: aParameter
 ^self update: anAspectSymbol

Object>>update: anAspectSymbol
 ^self

Your dependent object thus has a choice of which of the three messages in the update family to override.

Once you've implemented it, your method will be invoked rather than Object's method, since you are overriding

Object's implementation. If you don't implement any update method, the results will be benign and you won't

even notice that anything happened. In our example, we implemented update:with:from:. Figure 19-1

illustrates our example.

StockWatcher Stock
1. addDependent: self

3. update:with:from

2. changed:with:

Figure 19-1.
The addDependent: mechanism.

Model
In the changed:with: method, Object sends the myDependents message to get a collection of

dependents. Object has a class variable, DependentsFields, which is a Dictionary indexed by objects that have

dependents. The general access mechanism is DependentsFields at: objectWithDependents

put: collectionOfDependents.

The Dependency Mechanism 5

The main problem with this scheme is that if an object doesn't remove itself as a dependent by sending its

parent removeDependent: self, the dependents collection will never disappear from Object's class

variable. (You can see if you are cluttering up this collection by inspecting Object's DependentsFields class

variable.) Since the dependent objects continue to be referenced, they will not be garbage collected even though

they are no longer needed. What we'd like is a mechanism that automatically gets rid of the dependency

relationship when the parent is garbage collected, allowing the dependents to also be garbage collected when

they are no longer needed.

This is where the class Model comes in. It is a subclass of Object, and has a single instance variable called

dependents. An instance of Model keeps its dependents in a collection held by the dependents instance variable.

This means that if the instance is garbage collected, the dependents collection will disappear even though

dependents never send the removeDependent: message (however, it's good practice to always send

removeDependent:). If you look back to example one, you'll notice that our stock class is subclassed off

Model.

If you don't fully understand this, it doesn't matter. Just remember the basic rule: If you are going to use

dependencies a lot, subclass your parent class off Model rather than off Object.

expressInterestIn:for:sendBack:
Notice that the update:with:from: method in Example One has to compare the symbol it receives with

all the possible symbols it cares about (in effect doing a switch statement). The basic dependency mechanism

suffers from the disadvantage that all dependents are sent all changed messages, even if they are not interested in

most of them. Dependents must implement one of the update family of messages and must check to see if they

are interested in the particular symbol that was sent.

We can eliminate the conditional checking that we saw in the update method by sending

expressInterestIn:for:sendBack: instead of addDependent: to the parent object. In this

approach, we tell the parent to express an interest in a particular change for us and send us a specified message

when it sees the symbol associated with the change (i.e., the symbol sent by the parent when that particular thing

changes). The syntax is confusing because you would expect the dependent to express interest in the parent.

However, the syntax is such that the dependent tells the parent to express an interest in the dependent. Let's look

at an example using this approach.

MyStockWatcher2>>initialize: aStock
 aStock
 expressInterestIn: #price
 for: self
 sendBack: #priceChanged:by:

MyStockWatcher2>>priceChanged: oldPrice by: aStock
 Transcript
 cr; print: thisContext; tab;
 nextPutAll: 'Price changed from: '; print: oldPrice;
 nextPutAll: ' to '; print: aStock price; flush

So how does this work? Rather than asking the parent to send us all changed messages and then filtering

them out, we ask the parent to do the filtering, sending us a different message for each change we are interested

in. If the message we asked to be sent has no parameters, we will just be sent the message. If the message has

The Dependency Mechanism 6

one parameter (binary message or keyword message with one colon), we will be sent the old value as the

parameter. If the message has two colons, as does our example, we will be sent the old value and the object that

changed.

If you are interested in how this is done, the parent creates a DependencyTransformer and adds the

DependencyTransformer as a dependent. The DependencyTransformer gets all the update messages and looks

for the one we have expressed interest in. When it sees the change we care about, it sends us the message that we

registered as the parameter to the sendBack: keyword. The DependencyTransformer is very clever when it

comes to sending us the message. When we expressed interest in changes, the DependencyTransformer figured

out how many parameters our message expects based on whether it is a binary message or how many colons are

in the message. It implements update:with:from: so that it knows what changed, the old value, and the

object that sent itself the changed message, and it sends us the appropriate number of parameters. Of course, if

the parent didn't send changed:with:, one or more of the arguments will be nil. Figure 19-2 illustrates this

mechanism.

StockWatcher

DependencyTransformer

Stock1. expressInterest:for:sendBack:

2. changed:with:

3. update:with:from:
4. priceChanged:by:

Figure 19-2. The addDependent: mechanism.

Finally, to stop being told about changes, the dependent has to retract interest in that particular change of the

parent. It does so by sending the retractInterestIn:for: message, which should always be done. For

example,

parent retractInterestIn: #number for: self

onChangeSend:to:
Hiding the complexity further is the onChangeSend:to: message, which is implemented by the abstract

class ValueModel. It takes two parameters: the message that should be sent, and the object to send it to. Notice

that we don't specify what change we are interested in. This is because a ValueModel handles both the

expression of interest in changes, and the notification of changes, so it can make certain decisions for us. All that

onChangeSend:to: does is express an interest in the symbol #value.

ValueModel>>onChangeSend: aSymbol to: anObject
 self
 expressInterestIn: #value
 for: anObject
 sendBack: aSymbol

The Dependency Mechanism 7

So what is a ValueModel? It is basically a wrapper around a value — it holds the value. We can't change the

value directly and can only change it through the ValueModel. Because the ValueModel has control of the

change, it can notify dependents of the change. To set a new value, you send the ValueModel the value:

message with the new value as a parameter, and value: simply sets the value and notifies any dependents by

doing self changed: #value.

ValueModel>>value: newValue
 self setValue: newValue.
 self changed: #value

Because onChangeSend:to: translates into expressInterestIn:for:sendBack: and this latter

message creates a DependencyTransformer, we now have a DependencyTransformer waiting for its parent to

send self changed: #value. Once it receives this, it will send back the message we registered.

ValueModel and its subclasses are widely used in the User Interface widgets.

Let's look at our third example, which uses instances of ValueHolder, the simplest subclass of ValueModel.

In this example the get accessors return a ValueHolder (sending the asValue message to an object returns a

ValueHolder holding the object). The set accessors go through a level of indirection because they can't set the

value directly; they have to ask the ValueHolder to set it. So they send the value: message to the ValueHolder,

which updates the value it is holding and informs itself about the change. Unlike the previous two examples,

which inform their dependents of the old value, the ValueHolder mechanism provides no ability to do this.

Figure 19-3 illustrates this mechanism.

Stock

StockWatcher

DependencyTransformer

ValueHolder
on price1. onChangeSend:to:

2. changed: #value

3. update:with:from:
4. priceChanged:by:

Figure 19-3. The addDependent: mechanism.

In the example we'll just show the accessors for price since the other accessors have the same structure, just

different variable names. Additionally, the traded:price: message knows that we are dealing with a

ValueHolder, so it sends the value message to get the current value of totalTraded.

MyStock3>>traded: aCount price: aPrice
 self totalTraded: self totalTraded value + aCount.
 self price: aPrice

MyStock3>>price
 ^price isNil
 ifTrue: [price := 0 asValue]
 ifFalse: [price]

The Dependency Mechanism 8

MyStock3>>price: aValue
 self price value: aValue

If you look at the following stock watcher methods, you'll notice that we have an instance variable, stock,

which we need to add to the class definition for MyStockWatcher3. Because ValueHolders do self

changed: #value rather than sending the changed:with: message, they don't pass back a value. When

our StockWatcher discovers that the price has changed, it needs to send the stock a message to find out the new

price. To do this, it needs to keep hold of the stock in an instance variable. Also, because no value is passed, we

don't have a way to track the old value unless we were to keep it in an instance variable.

MyStockWatcher3>>initialize: aStock
 stock := aStock.
 stock price onChangeSend: #priceChanged to: self

MyStockWatcher3>>priceChanged
 Transcript
 cr; print: thisContext; tab;
 nextPutAll: 'New price='; print: stock price value;
 flush

We could dispense with the instance variable if we are prepared to specify a two keyword message where we

know the parameter to the first keyword will be nil. So we might write the above two methods as follows.

MyStockWatcher3>>initialize: aStock
 aStock price onChangeSend: #priceChanged:by: to: self

MyStockWatcher3>>priceChanged: aPlaceHolder by: aStock
 Transcript
 cr; print: thisContext; tab;
 nextPutAll: 'New price='; print: aStock value;
 flush

To cancel the dependency we set up with onChangeSend:to:, we send the

retractInterestIn:for: message. For example,

parent retractInterestIn: #priceChanged for: self

Which mechanism should you use?
Some people use onChangeSend:to: for basic dependencies since it is an elegant message. However, for

general dependencies the ValueHolder mechanism suffers from some disadvantages. To register as a dependent,

an object must send onChangeSend:to: to a ValueHolder. This means that the parent object, which may be

an instance variable, must hold a wrapper rather than real data, which is conceptually inelegant. A more serious

disadvantage is that for objects to register an interest in a variable, you have to open up the details of the object.

The data is no longer fully encapsulated in the sense that other objects now know how the data is stored.

With either the expressInterestIn:for:sendBack: or the addDependent: mechanism, the

parents are free to change the way they store and manipulate their data, as long as they still notify themselves of

changes with the same symbol.

ValueHolders and other subclasses of ValueModel are widely used in the User Interface widgets and you'll

see a lot more of them in Chapter 23, Model-View-Controller, and Chapter 24, MVC Dependencies. However,

The Dependency Mechanism 9

for basic dependencies, I prefer the other mechanisms: expressInterestIn:for:sendBack: and

addDependent:. Of the two, my preference is for expressInterestIn:for:sendBack:. With the

addDependent: mechanism you have a single method that receives notification of all changes to all parents.

It's now up to your method to make sense of all the notifications, which can result in a very procedural-looking

set of booleanCondition ifTrue: statements. On the other hand,

expressInterestIn:for:sendBack: allows you a narrower focus on the specific problem. When a

particular aspect of the parent changes, send me a particular message. When another aspect in a different parent

changes, send me a different message. It's a nice object-oriented approach.

Broadcasting
VisualWorks provides the ability for a parent to broadcast a message to all its dependents. In our stock

example, there may be cause for concern if a stock price changes more than thirty percent in a single trade.

Who's responsibility is it to care about this? A good argument can be made that the stock itself doesn't care and

that it's the responsibility of the stock watchers to handle the situation. For the sake of this discussion, however,

let's make the case the stock cares that its price has risen more than twenty percent, and that it needs to inform its

dependents.

The broadcast mechanism lets it do that. There are two messages, broadcast: aMessage and

broadcast: aMessage with: aParameter. Since the stock watchers need to know which stock is

sending the message, it makes more sense to use the second message. So, we might see code in the

traded:price: method in Stock to do something like the following:

MyStock traded: aCount price: aPrice
 ... code to set values ...
 price notNil ifTrue:
 [(aPrice – price / price) abs > 0.3
 ifTrue: [self broadcast: #bigChange: with: self]].

This unilaterally sends the bigChange: message to all dependents passing the stock object as the

parameter. If the dependents haven't implemented bigChange:, an exception will be raised. So there's a

responsibility on the dependents to implement this message, even if they don't care about large changes in price.

There's also an argument against specifically broadcasting a large change in price since one might argue that the

responsibility of stock is simply to inform its dependents about changes in price. It's the responsibility of the

dependents to decide if a given change is too high.

In the dependency scheme, the general philosophy is that dependents know about and care about the parent,

but the parent doesn't know or care about the dependents. This philosophy breaks down with broadcasting

because if the parent decides to send a new message, some programmer has to figure out all the objects that

register as dependents, then add the new message to each of them. An alternative and better approach would be

to modify the broadcast messages to do safe performs (look for implementors of safelyPerform: to see how

this is done).

If you modify traded:price: to include the broadcast code without adding the bigChange: method to

the stock watchers, then run the three examples, you will see some interesting results. In Example One, an

exception will be raised saying that StockWatcher1 doesn't understand the message. In Example Two, it will be a

DependencyTransformer that doesn't understand the message. In Example Three, no exception will be raised

The Dependency Mechanism 10

because the Stock3 object has no dependencies — it's the instance variable ValueHolders that have the

dependencies. So, to use broadcasting, you'll have to use the addDependent: mechanism. Note that none of

the system classes send either broadcast: or broadcast:with:, and personally, I'd recommend against

using them for the above reasons.

Dependency Considerations
There are two things to be aware of when using the dependency mechanism. First, parents should not send

explicit messages to their dependents. Second, and most importantly, it's worth getting into the habit of always

breaking dependencies when they are no longer needed.

Dependency violation
The dependency mechanism is supposed to be a one-way mechanism. The parent or model doesn't know

anything about its dependents. It doesn't even know if it has any dependents. However, sometimes people write

code so that the parent, in Jim Dutton's phrase, gropes its dependents. Here's an example.

self myDependents do:
 [:each | (each isKindOf: SomeClass)
 ifTrue: [each grope]]

This code violates the basic rule of dependencies — that a parent should have no knowledge of its

dependents.

Breaking dependencies
When the product is almost complete, most organizations try to run it as they think customers will use it.

Usually they notice that the product has memory leaks, and that it slowly consumes the available memory.

Memory leaks occur because objects are not being garbage collected, and objects are not garbage collected if one

or more other objects reference them. When dependencies are not broken, dependent objects are referenced by

their parents. If the parent object is held in a class variable or a global, or is refererenced by another object in a

class variable or a global, or is referenced by an object that is referenced by an object in a class variable or a

global, etc., the dependents will never be garbage collected. Sometimes it is extremely difficult to track down

exactly why an object is not being garbage collected because the reference path can be very long. In fact it's

more difficult to track down memory leaks when the parent is a subclass of Model because the dependencies of

non-Models are tracked in one place, in Object's class variable DependentsFields.

To reduce the chances of memory leak, you should get into the habit of always breaking dependencies when

the dependent is no longer needed or the dependent no longer needs the dependency. If the dependency was set

up using addDependent:, break it with removeDependent:. If it was set up with

expressInterestIn:for:sendBack: or onChangeSend:to:, break it with

retractInterestIn:for:. The breaking of dependencies is usually done in a release method such as

shown below. In the example, the MyClass object removes itself as a dependent of another object, then tells one

if its instance variables to break any dependencies it may have, and finally gives its superclass a chance to do any

releasing.

The Dependency Mechanism 11

MyClass>>release
 someObject removeDependent: self.
 self someVariable release.
 super release.

	The Dependency Mechanism
	Basic Dependency
	Underlying mechanism
	Model
	expressInterestIn:for:sendBack:
	onChangeSend:to:
	Which mechanism should you use?
	Broadcasting
	Dependency Considerations
	Dependency violation
	Breaking dependencies

