
Chapter

15
Printing Objects

If you want to print information about an object, you send it the message printString and get back a

string containing some information about the object. For example, 3 printString returns '3'.

OrderedCollection new printString returns 'OrderedCollection ()', which shows that you have an

empty collection. Why is this useful? The printString message is used to display information for

debugging. In particular, it is sent by inspectors; whenever you open an inspector on an object, the inspector

sends the printString message to the object and displays the result.

The default printString is implemented by Object. It first creates a stream, then does self

printOn: stream. Object also implements a default printOn: method that writes to the stream a string

containing the class name preceded by 'a' or 'an'. If you create a new object, it will by default inherit printOn:

from Object. Try the following. Define a new class MyClass then evaluate MyClass new printString.

If you want to change what printString returns, it's a simple matter of implementing printOn: (in the

printing protocol). Take a look at the printOn: method for Array, Association, and ValueHolder.

Here's an example of a very general printOn:. It makes heavy use of meta-programming, which involves

writing code that manipulates the information about such things as classes and instance variables. Not for the

faint at heart, but it can be a lot of fun to look around classes such as Behavior and ClassDescription. For more

on meta-programming, see Chapter 29, Meta-Programming.

printOn: aStream
 super printOn: aStream.
 self class allInstVarNames
 do:
 [:each | | index |
 index := self class instVarIndexFor: each.
 aStream
 crtab;
 nextPutAll: each;
 nextPut: $:;
 space;
 print: (self instVarAt: index)]

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

Printing Objects 2

I use this scheme in a slightly modified way. I write this method as Object>>printAllOn:, replacing

the super printOn: aStream line with the code from Object>>printOn:. Then in my new classes, I

write the printOn: method to simply invoke printAllOn:. Sometimes this doesn't give me the formatting I

want so I'll write a specific printOn:, but often this will suffice.

MyClass>>printOn: aStream
 super printAllOn: aStream

Display strings
There is another message, displayString, which returns a value suitable for displaying. Where

printString provides a representation of the object that is useful for debugging, displayString

provides a representation that can be presented to the user. The default displayString, implemented by

Object, just does ^self printString but is overridden, for example, by CharacterArray (the superclass of

String) so that strings do not have surrounding quotes. For example,

Transcript cr; show: 'Hello' printString. 'Hello'
Transcript cr; show: 'Hello' displayString. Hello

The displayString message is used when displaying objects in a List box. A List box has a

SequenceView as its view, or widget. Its model is a SelectionInList containing the collection of objects. The

widget displays what the objects return when sent displayString, although you can change this. To have a

message different from displayString sent to the objects, send displayStringSelector: aSymbol

to the List box widget (the SequenceView), passing as the parameter the message selector you want sent.

Printing formatted numbers, dates, and times
Sending the printString message to a number returns the obvious representation of the number as a

string. Sent to dates and times it returns a good representation, but in a pre-defined format. For example,

234 printString. '234'
Date today printString. '28 September 1995'
Time now printString. '9:59:04 am'
Timestamp now printString. '09/28/1995 09:59:29.000'

There are times when you want more. For example, when printing a number you might want commas to

separate the thousands, parentheses to show a negative number, or to zero fill to a specified length. When

specifying a date or a time you might have international formatting concerns. The Date class has an additional

method called printFormat: that allows some, but not enough, flexibility. In the example below, we ask to

print the month number, the day number and the two-digit year number, with the slash character as separator.

(Date newDay: 34 year: 1996) printFormat: #(2 1 3 $/ 1 2) '2/3/96'

The class PrintConverter lets you do some reasonably sophisticated formatting. You create a PrintConverter

of the right type, specifying the format string you want, then you can ask the instance to format your numbers or

dates when needed. Note that the PrintConverter returns an instance of Text so you'll need to send this the

Printing Objects 3

string message to get a string. Let's look at some examples of formatting numbers, dates, and times. The

string returned will be shown on the following lines.

pc := PrintConverter for: #number withFormatString: '00000'.
(pc formatStringFor: 234) string.
'00234'

pc := PrintConverter for: #date withFormatString: 'dddd, mmmm d,
yyyy'.
(pc formatStringFor: Date today) string.
'Thursday, September 28, 1995'

pc := PrintConverter for: #timestamp withFormatString: 'mmm d,
hh:mm:ss.ffff'.
(pc formatStringFor: Timestamp now) string.
'Sep 28, 09:55:48.0000'

The PrintConverter actually uses the classes NumberPrintPolicy and TimestampPrintPolicy to do the

formatting. To understand all the formatting options, look at the class comments for these classes. You can also

use these classes directly if you wish, and here are some examples of this. Again, the policy returns an instance

of Text, which we convert to a string.

(NumberPrintPolicy print: 1234 using: '#,###') string.
 '1,234'
(NumberPrintPolicy print: –1234 using: '#,###;(#,###)') string.
 '(1,234)'
(TimestampPrintPolicy print: Date today using: 'yymmdd') string.
 '950928'
(TimestampPrintPolicy print: Time now using: 'mm:ss.ff') string.
 '01:12.00'

There are more ways of using these classes than I've shown here. For example, you can write the formatted

data to a stream, and you can create instances of the policy classes. The PrintConverter class also gives you an

easier but less powerful interface for numbers. You can specify digit positions using #, so, for example, the

following gives a string with two leading spaces.

PrintConverter print: 234 formattedBy: '#####.###'.
 ' 234.000'

VisualWorks 2.5
VisualWorks 2.5 provides some extra formatting capabilities. In particular, dates and times now respond to

the new messages longPrintString and shortPrintString. For example,

Date today printString. 'December 2, 1995'
Date today longPrintString. 'December 2, 1995'
Date today shortPrintString. '12/2/95'

You can also create a string from a format string and arguments using a message from the expandMacros

family in the class CharacterArray . For information on the parameter substitution, look at the class comments

for StringParameterSubstitution. Here's an example, with the output following the example message. Note that

the expandMacrosWithArguments: message returns an instance of Text, which we convert to a string.

Printing Objects 4

('Hello <2s>.<n>There are <1p> <3?apples:oranges> in the basket'
 expandMacrosWithArguments: #(4 'Alec' true)) asString.

'Hello Alec.
There are 4 apples in the basket'

printf-scanf
In the Smalltalk archives there is a fileIn called printf-scanf which gives you the capability of doing

formatted printing as if you were using C's printf function. Its location in the MANCHESTER archive is

usenet/st80-r4.X/printf-scanf. For more information on retrieving code from the Smalltalk archives, see Chapter

35, Public Domain Code and Information.

	Printing Objects
	Display strings
	Printing formatted numbers, dates, and times
	VisualWorks 2.5

	printf-scanf

