
Chapter

10
Object

Smalltalk is a rooted system, which means that there is a root superclass from which all other classes are

descended. That root superclass is Object. (Actually, there other root classes, and you can see them by inspecting

Class rootsOfTheWorld. However, for most application development you can consider Object to be the

single root class.)

Object provides a lot of behavior that is inherited by all its subclasses, although sometimes they will override

that behavior. It's worth looking through all the protocols and methods of Object to become familiar with the

general behavior that is inherited by all classes. Let's take a look at some of the instance side protocols of Object.

We won't look at all protocols, or even all methods in the protocols we do look at, but we'll cover enough to give

you a feel for what your classes will be inheriting from Object.

Accessing
The message at: will give the object at the specified index, while at:put: puts an object at that index.

The size message returns the number of indexable fields in the object. These messages only work with

indexable objects; ie, collection type objects. Similar methods, basicAt:, basicAt:put:, and

basicSize do the same things, but should never be overridden by subclasses. The intent is that you can

always rely on the basic methods to provide the functionality without worrying that some intermediate

superclass might have overridden them. Finally, yourself returns the receiver of the message. It is often used

in cascades to make sure that the correct object is returned. For example, in list := List new add: 1;

yourself, the yourself makes sure that the variable contains the list rather than the number one.

Changing
The message changed, changed:, and changed:with: are all used to set off dependency notification.

The typical use is that an object sends one of these messages to itself when it has changed, and all dependents of

the object are informed. We'll see more about the dependency mechanism in Chapter 19, The Dependency

Mechanism. The changeRequest message is sent when an application wants to change and is asking its

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

Object 2

dependents if they agree to the change. Your application can override changeRequest to put in any

application specific checking.

Class membership
The message isMemberOf: tells if the receiver is an instance of the specified class, isKindOf: tells if

the receiver is an instance of the specified class or one of its subclasses, and respondsTo: tells if the receiver

understands the specified message. The use of all three methods often indicates that you are thinking in

procedural terms, that you are not using polymorphism well. These three methods should generally be avoided.

The message class gives you the class of which the receiver is an instance.

Comparing
The message == tells you if the receiver and parameter are the same object, if they are identically equal. The

message = tells you if the receiver and parameter are equal. For example, two strings with the same characters

are not the same object, but they are equal, so == returns false and = returns true. Since different classes have

different criteria for judging their instances to be equal (for example, two Employee objects may be equal when

the social security numbers are the same), the default implementation of = is simply to invoke ==, leaving

subclasses to override = with more appropriate behavior. (You should never override ==.) Corresponding to =

and == are ~= and ~~, which are not equal and identically not equal. The message hash returns a hash value

for an object, and should be overridden whenever you override = because two objects that are equal should have

the same hash value. For more information on all this, see Chapter 6, Special Variables, Characters, and

Symbols.

Converting
The message -> returns an Association with the receiver as the key and the parameter as the value.

Associations are useful when you want a pair of objects, and they are used in Dictionaries, which hold all the

key-value pairs in Associations. The message asValue puts the receiver in a ValueHolder and returns this.

ValueHolders are widely used by the user interface dependency mechanism, which wants a level of indirection

when referring to an object.

Copying
The copy message copies the receiver. It is implemented by sending shallowCopy then postCopy. The

shallowCopy method makes a shallow copy of the receiver — ie, it doesn't make copies of any of the instance

variables, leaving both the original object and its copy sharing instance variables. The message postCopy is a

hook that gives you an opportunity to copy instance variables by overriding postCopy. For more information,

see Chapter 22, Common Errors and Chapter 25, Hooks into the System.

Object 3

Dependents access
The messages addDependent: and removeDependent: provide the basic mechanism for setting up

and closing down a dependency relationship on another object. The messages

expressInterestIn:for:sendBack: and retractInterestIn:for: provide a more

sophisticated mechanism. There is more information on these messages in Chapter 19, The Dependency

Mechanism.

Error handling
The message subclassResponsibility is sent in methods that should be overridden by subclasses.

The typical use is for the superclass method to do self subclassResponsibility. If a subclass fails to

override the method, an exception is raised. The opposite message, shouldNotImplement is sent in a

subclass method to show that although the subclass has inherited the method, it is not appropriate behavior for

this subclass. The messages halt, halt:, error:, and notify: are all used to generate exceptions and

raise a Notifier/Debugger window (for example, self halt. The messages errorSignal and

messageNotUnderstoodSignal return signals that can be used in signal handlers to trap exceptions. The

message doesNotUnderstand: is sent when a message is not understood by the receiver, and its default

behavior is to raise a Notifier/Debugger window. Override this method if you want to trap messages that were

not understood so you can pass them to another object. We use this mechanism in Chapter 21, Debugging.

File In/Out
The messages binaryRepresentationVersion and representBinaryOn: provide specialized

behavior for use with the BOSS facility when storing and retrieving binary objects. In particular, by overriding

representBinaryOn:, you can specify how you want an object to be stored. Returning nil, which is the

default implementation, says to store the default representation of the receiver. Returning 0 says to not store the

object at all. The other common return is a MessageSend, which provides a way to store the object in one form

and reconstitute it in a different form when it is read back.

Initialize-release
The release message breaks any dependencies that may have been established on this object. It is sent

when the object is no longer needed and allows the object to be garbage-collected.

Message handling
The perform: family of messages allow you to create a method name at runtime then invoke the method. It

is widely used when you don't know the name of the method at compile time and have to wait until runtime. For

example, the user interface uses it heavily since the names of the accessor methods for variables and menus are

specified by the user when building the user interface, but the underlying user interface code is part of the system

classes. We'll talk more about the perform: messages in Chapter 28, Eliminating Procedural Code and we'll

use it in Chapter 30, Testing.

Object 4

Printing
The most commonly used methods in the printing protocol are printString, printOn:, and

displayString. You send printString to an object to get a printable representation, one that can be

shown on the Transcript. The printString message invokes printOn:, so to override what

printString returns, you override printOn:. The displayString message returns a more suitable

representation of the receiver for use in labels and list boxes (SequenceViews). It defaults to printString,

but is overridden by classes such as String.

System primitives
The messages allOwners and allOwnersWeakly: return collections of objects that reference the

receiver. The messages firstOwner and ownerAfter: return individual objects from those collections. The

become: message swaps the references of two objects. One use of become: is when collections grow in size.

A new collection is created, the elements are copied across, and the new collection becomes the old collection.

The messages instVarAt: and instVarAt:put: allow you direct access to instance variables without

having to name them. However, since use of these two methods violates encapsulation, they should be used

sparingly, if at all.

Testing
This protocol contains methods that return true or false. Most of the methods return false, allowing them to

be overridden when appropriate. For example, isInteger returns false, but is overridden in Integer to return

true. The isBehavior message tells if the receiver can be the class of another object. The isImmediate

message tells if the receiver is an immediate object such as a SmallInteger or a Character that can be represented

in thirty-two bits, or whether the receiver is being represented by an object pointer. The messages isNil and

notNil tell whether the object is nil and are overridden by UndefinedObject . The message

isSequenceable tells if the object is a sequenceable collection — ie, a subclass of SequenceableCollection.

The message isString tells if the object is a String, and isSymbol tells if it is a Symbol. The

respondsToArithmetic message tells if the object belongs to a subclass of ArithmeticValue.

Use of testing messages allows you to avoid messages such as isKindOf: and isMemberOf:. In your

own classes, use isXxx types of messages if you need to determine if an object is of a particular type. For

example, suppose you have a Response class with subclasses of SuccessResponse and FailureResponse. In

Response, implement the methods isResponse, isSuccessResponse and isFailureReponse, with

the first returning true and the next two returning false. SuccessResponse should override

isSuccessReponse to return true, and FailureResponse should override isFailureResponse to return

true. If you have many different types of domain objects for which you want to implement isXxx type

messages, consider creating an ApplicationObject that is subclassed off Object, where you write a series of

isXxx methods, each returning false. Then in each domain class you override the corresponding testing method,

returning true.

Object 5

Updating
The methods in this protocol that you are most likely to be interested in are the update: family —

update:, update:with:, and update:with:from:. These are all used in the dependency mechanism to

inform dependents about changes. An object that changes sends itself a message from the changed: family,

and eventually these messages send a message from the update: family to each dependent. Dependents

therefore need to override one of the update: messages if they want to take action based on the notification.

We talk more about the dependency mechanism in Chapter 19, The Dependency Mechanism.

User interface
The browse message opens a class Browser on the class of the receiver. The inspect message opens an

Inspector on the receiver. This message is overridden by some classes to provide an Inspector more suitable for

the class. For example OrderedCollection overrides inspect to hide the internal implementation details of the

collection. To see the internal details you can send the message basicInspect, which shows all the instance

variables of an object. Figure 10-1 shows an instance of OrderedCollection inspected by sending first inspect

and then basicInspect.

Figure 10-1. Inspecting using inspect and basicInspect.

	Object
	Accessing
	Changing
	Class membership
	Comparing
	Converting
	Copying
	Dependents access
	Error handling
	File In/Out
	Initialize-release
	Message handling
	Printing
	System primitives
	Testing
	Updating
	User interface

