
Chapter

6
Special Variables, Characters, and

Symbols

Smalltalk is a very small language, with a very large class library. But even though it is a small language,

there are still a few things to learn.

Character Pairs
There are several character pairs that mean things when used together. The VisualWorks Browser makes it

easy to manipulate text and character pairs. You can surround a block of text with a character pair by

highlighting the text then pressing Esc-leftCharacter (the Escape key followed by the left character of the pair).

You can select and highlight all the text between a character pair by double-clicking between the character and

the text (at either end). You can remove the character pair by highlighting the text between the pair then pressing

Esc-leftCharacter.

"This is a comment"
Text between pairs of double quotes is comment text and will not be compiled. You can make a block of text

into a comment by highlighting it then pressing Esc-".

'This is a string'
Enclosing a sequence of characters within single quotes is a way to create an instance of String. See the

section below on Automatically Constructed Objects.

(2 * 3)
Enclosing something within parentheses gives it higher precedence. Thus, 1 + (2 * 3) means that 2 *

3 is evaluated before adding the result to 1. Parentheses are also used to enclose literal arrays (see below).

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

Special Variables, Characters, and Symbols 2

[some code]
Surrounding code with square brackets creates an instance of BlockClosure. See the section below on

Automatically Constructed Objects.

Prefixes
$ The dollar sign is a prefix for creating an instance of class Character. See the section below on

Automatically Constructed Objects.

The pound/hash/number symbol is used to create a symbol or a literal array. See the section below on

Automatically Constructed Objects. The # character is also used in documentation to denote a message. For

example, if you read an article that describes sending the new message, it may refer to the message as

#new. In this book we are denoting messages with (this font) rather than with a # prefix.

The pound/hash/number symbol is used to create a symbol or a literal array. See the section below on

Automatically Constructed Objects. The # character is also used in documentation to denote a message. For

example, if you read an article that describes sending the new message, it may refer to the message as #new. In

this book we are denoting messages with bolding rather than with a # prefix.

Special Variables
The special variable self is the receiver of the message, or the object executing the method. You use self

when an object wants to send a message to itself. This is described more fully in Chapter 2, Messages.

The special variable super refers to the superclass of the class that defines the currently executing method.

This is described more fully in Chapter 2, Messages.

The special variable thisContext is the current context that is executing. The statement thisContext

receiver gives the object executing the method, while this Context sender gives the context of the

method that sent the message being executed, and thisContext sender receiver gives the object that

sent the currrently executing message.

The most common usage of thisContext is in the debugger since it is possible to trace through the stack using

the sender message. To get a feel for thisContext, when you are comfortable writing methods, put the

following in a method:

Transcript cr; show: thisContext printString.

Assignment
:= is used to assign a value to a variable. For example,

number := 3.

Assignments are the last thing to happen in a statement (except for returns). So, the following assigns the

string '68' to the variable x.

x := 67.8 rounded negated printString copyFrom: 2 to: 3.

Special Variables, Characters, and Symbols 3

The assignment operator is usually called 'gets' or 'colon equals' when speaking. Giving it a special name

rather than 'equals' means that you are less likely to type something like number = 3, which sends the =

message to number with 3 as the parameter, and returns a Boolean.

Note that you can do multiple assignments in a statement, although I don't particularly recommend it since it

doesn't help clarity. For example,

x := y := 3.

Return
The caret symbol (^) is the return symbol. If the line being executed says ^3, the method will exit and return

a SmallInteger with the value 3. ^ is the very last thing done in the statement. In the following example, the

variable instVar will be assigned the value -3, then the value of instVar (ie, -3) will be returned from the method.

^instVar := 3.14 truncated negated

By default, a method returns self. That is, if the method gets to the end without executing an explicit ^

statement, it returns self. You can see this by holding down the Shift key when you select the method with the

mouse. This shows the decompiled code, which will usually have ^self at the end.

You will sometimes see fairly complex looking return values. Two common return statements follow. In the

first example, you might think of returning from the blocks or setting a temporary variable, but the example

shows the more common style. In the second example, we return the results of building a new collection in one

operation rather than putting the new collection in a temporary variable then returning the temporary.

^objectOne > objectTwo
 ifTrue: [objectOne]
 ifFalse: [objectTwo]

^someCollection
 collect: [:each | self manipulate: each]

Statement Separator
A period (.) is the statement separator. If there are two statements, the first needs a period to let the compiler

know that the first statement is done and the second statement is about to start. Leaving out periods is one of the

most common errors and usually results in a messageNotUnderstood exception when Smalltalk treats the first

word of the second statement as a message to be sent to the result of the first statement. A good way to check for

missing statement separators is to run the formatter after accepting a method. If the method looks different than

you expected, you may have a missing period.

Note that the period is not a statement terminator. A method with one statement does not need a period. Nor

is a period needed for the last statement in a method or a block. This is unlike C++ where a semicolon is a

statement terminator and is required for all statements. Putting in a period after a statement where it is not

needed is okay though. My usual mode of typing is to not worry about extra periods. After I'm done and the

method compiles (ie, it is successfully accepted), I run the formatter, which removes any unnecessary

parentheses and periods.

Special Variables, Characters, and Symbols 4

Cascading
The cascade operator is a semicolon (;). Cascades allow you to send multiple messages to the same object

(the same receiver) without having to name it every time. The most common occurences are when printing to the

Transcript, when overriding printOn:, and when adding multiple items to collections. For example,

Transcript cr; show: 'this is a string'.

aCollection
 add: 'this';
 add: 'that'.

printOn: aStream
 aStream
 print: self class;
 crtab;
 print: self instVarOne.

If you use cascades, the generally accepted practice is to put the message receiver on a line by itself, then

each cascade goes on a separate line, tabbed over one from the receiver. Short messages such as cr, or tab, are

often put on the same line in short cascades. Unfortunately the formatter destroys any indentation you specify for

cascades. Because of this, I will often specify the message receiver each time and use a period to separate the

statements. There is no performance loss by doing this.

Automatically Constructed Objects
There are some objects that are created automatically rather than by explicitly sending a message such as

new to a class.

SmallInteger
4 An instance of SmallInteger can be created by simply using the integer value. One of the interesting thing

about integers is that you can't get integer overflow because if you add one to the largest possible SmallInteger,

the return from the + message is a LargePositiveInteger. Try inspecting SmallInteger maxVal + 1.

Float
3.14 An Instance of Float can be created by using a floating point value.

String
'here is a string' An instance of String (actually a subclass of String) can be created by enclosing

a sequence of characters in single quotes. String is a funny class because even if you do String new you still

end up with an instance of a subclass of String. To create a string with an embedded quote, use two single quotes

to denote the embedded quote. For example,

'You can''t do that'.

Special Variables, Characters, and Symbols 5

Character
$A An instance of Character can be created by preceding the character with a dollar sign. For example, the

character X is created by writing $X. You can create instances of space, tab, carriage return and other white-

space characters the same way; for example, you can refer to a space as $ and a newline by typing $ followed by

pressing the return key. However, it's difficult to read white space characters created like this, so the preferred

way to create them is to send the appropriate message to Character (eg, Character space or Character

cr). To see which characters can be created with message sends, look at the class side messages of Character or

inspect Character constantNames.

Symbol
#notFound An instance of Symbol can be created by prefixing a sequence of characters with a #. If you

want the symbol to contain space characters, you can enclose the symbol name with single quotes. For example,

#'not found'. If you inspect this symbol, it will display with the quotes but when you look at the first character,

you will see that it is a $n rather than a single quote.

Array
#(1.1 $a 'hi') An instance of Array can be created by enclosing other automatically constructed

objects between parentheses and preceding this with a # character. Note the space between array elements. Note

also that the array elements do not have to be of the same type.

You cannot use this type of contruction with objects that require message sends. So you can't say #(1

(Character cr)) and expect to get an array of an Integer and a Character. However, you can create literal arrays

that contain other literal arrays, such as #(1 $a #(1.1 'hi' #(2 #symbol))).

BlockClosure
['Hi' echo] An instance of BlockClosure can be created by enclosing code between square brackets.

The code will not be executed until the block is send a message from the value family. You can set up code in

a BlockClosure then pass the block to another method where it will be executed. BlockClosures are often stored

in Dictionaries for later access and execution. Note that the value of a block is the value of the last statement

evaluated in the block. So, the value of [3. 4. 5. 1] is 1.

Blocks can have parameters, which are defined with a colon in front of them and a vertical bar separating

them from the rest of the block. For example [:parameter | parameter echo]. Blocks can also have temporary

variables, which are enclosed between vertical bars. For example, [:parameter | | temp | temp := parameter * 2.

temp echo].

If all the blocks used as either receivers or parameters in messages such whileTrue:, ifTrue:, and

and: are literal blocks (i.e., defined directly with square brackets and not stored in a variable), the blocks will

be compiled in-line and are not treated as blocks.

There are three kinds of BlockClosures: full, copying, and clean. In general, blocks need to maintain a

reference to the method that defined them, which they store in a variable called outerScope. If the block contains

an explicit return (^), or a reference to variables defined outside the block and which can change after the block

Special Variables, Characters, and Symbols 6

is created, outerScope will contain a non-nil value and the block is a full block. If there is no explicit return and

any outside variables are determined to be non-changing after the block is created, copies of these variables are

made and stored in another instance variable called copiedValues. For obvious reasons, this type of block is

called a copying block. A block that contains neither an explicit return or references to outside variables is called

a clean block. So, for example:

[:parameter | parameter echo] clean
[:parameter | | temp | temp := parameter] clean
[:parameter | self foo: parameter] copying (note the self)
[methodTemporary echo] copying or full
[:parameter | ^ parameter * 3] full

Because full blocks have to chain back through the outer scope pointers, and this chaining is relatively

expensive, it pays to avoid full blocks if possible. Create clean blocks if you can since they have the highest

performance. If your block refers to self or to another outside variable, try to make it a copying block — ie,

convince the compiler that the variables will not change after the block is created.

= and ==
The two messages = and == are not special in the same way as the things described above; they are just

binary messages like any other binary message. However, there are some things about them that deserve to be

specifically mentioned, so here is as good a place as any.

The = message returns true if the two objects are equal, while the == message returns true if the two objects

are identically equal. What does this mean? (The opposites of = and == are ~ and ~~. These are a single tilde

and two tildes.)

Identically equal
Objects are identically equal when they are the exact same object. The way that Smalltalk knows they are the

same object is that they have the same object pointer. Object pointers are 32 bit quantities, with some of the bits

providing information about whether the value is a pointer or an object value. If you have an employee object,

the object pointer will reference the employee object that exists somewhere in memory. Two employee objects

are identically equal if the object pointer references the same location in memory.

On the other hand, some objects can be represented fully in 32 bits. These objects return true when sent this

isImmediate message, and currently are objects of class SmallInteger and Character. (The maximum value

of SmallInteger is less than the maximum value of a 32 bit integer because three bits are used to denote that it is

a SmallInteger and not a pointer to an object.) Because of the way they are stored, identically named instances of

Symbol are also identically equal.

3 == 3 true
$a == $a true
#abc == #abc true
true == true true
nil == nil true
'abc' == 'abc' false
3.14 == 3.14 false
#(1 $a) == #(1 $a) false

Special Variables, Characters, and Symbols 7

If you examine the following, you will discover that x is identically equal to y. This is because assignment

does not copy the value; it binds the same object to a new variable so that both variables now contain the same

object.

x := #(1 $a).
y := x.
x == y true

Equal
Objects are equal when their values are equal. Two strings with the same character sequence will be equal. If

we look at the examples above that returned false and check for simply equality, we get

'abc' = 'abc' true
3.14 = 3.14 true
#(1 $a) = #(1 $a) true

If you define a new class, how does the default = method tell whether you consider two object of this class to

be equal? The answer is that it doesn't. If you look at the default = method defined by Object you will see that

the default implementation requires two objects to be identically equal before it agrees they are equal. Ie, =

simply does ^self == anObject.

If you define your own = method you should also write a hash method, and vice versa. Two equal objects

should also have the same hash value. The reason that hash and = need to go hand in hand is that some

collections store objects using a hashing scheme (such as Dictionary, Set, and Bag). Because hashing schemes

can have location conflicts, a hash scheme uses hash to find the primary location for the object, then uses = to

see if an object in the location is the object it wants. (By the way, don't try to redefine ==. First, the system will

ignore your override, and second, == has a well-defined meaning that should not be changed.)

If you override =, you might consider first checking that the class of the receiver is the same as the class of

the parameter. The first example below checks that the classes are the same, while the second allows the

parameter to belong to a subclass of the receiver.

MyClass>> =
 anObject class == self class ifFalse: [^false].

MyClass>> =
 (anObject isKindOf: self class) ifFalse: [^false].

	Special Variables, Characters, and Symbols
	Character Pairs
	"This is a comment"
	'This is a string'
	(2 * 3)
	[some code]
	Prefixes

	Special Variables
	Assignment
	Return
	Statement Separator
	Cascading
	Automatically Constructed Objects
	SmallInteger
	Float
	String
	Character
	Symbol
	Array
	BlockClosure

	= and ==
	Identically equal
	Equal

