
Chapter

5
Instance Creation

We've now covered enough material to look more closely at creating instances of a class. The basic instance

creation message is new, which returns a new instance of the class. For example,

employee := Employee new.
collection := OrderedCollection new.

If you send new to a collection class, it will return a new collection1. The size will always be zero since the

collection is empty, but the capacity will be the default capacity for that class. The capacity is the number of

items you can put in the collection before it has to grow. For example, printing the following expressions gives

the capacity shown on the right.

Array new capacity. 0
Bag new capacity. 0
Dictionary new capacity. 3
Set new capacity. 3
List new capacity. 5
OrderedCollection new capacity. 5

Growing a collection is quite expensive because the growing code creates a new collection with a larger

capacity, copies over all the elements of the collection, then becomes the new collection. If you know how big

the collection should be, or have an idea for the starting capacity, it's more efficient to create the collection by

sending the message new: with the starting capacity as a parameter. Some collections, such as instances of

Array, don't grow automatically, so it's important to specify their capacity (for collections that don't

automatically grow, the size and capacity are the same). For example,

array := Array new: 10.
collection := OrderedCollection new: 20.
stream := (String new: 100) writeStream.

The new and new: methods are implemented by Behavior, although they are overridden by many other

classes. Because your class will inherit new and new:, you don't need to override them unless your class has

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

Instance Creation 2

data that needs to be set when an instance is created. There are two types of data setting that can be done: setting

variables to a default initialized value, and setting variables to data that is specific to the instance. Let's take a

look at each of these.

Setting default values
Suppose we have an Employee object that tracks the number of hours of vacation and sick time allowed and

taken. When an instance of Employee is created, we want to initialize these instance variables to the appropriate

values, regardless of the name or salary of the employee. There are two ways of doing this. We can use lazy

initialization as we saw in Chapter 4, Variables. For example,

Employee>>sickHoursUsed
 ^sickHoursUsed isNil
 ifTrue: [sickHoursUsed := 0]
 ifFalse: [sickHoursUsed]

Alternatively, we could initialize all the data in a single initialize method. Lazy initialization is useful if

you have objects where the data may never be accessed and where it's expensive to initialize the data, but it has a

cost of an extra message send each time the data is accessed. If you will be accessing the data a lot, it's worth

doing the initialization in an initialize method. For example, for our Employee object we might have the

following (although we wouldn't have hard coded values for the allowed variables).

Employee>>initialize
 self sickHoursUsed: 0.
 self vacationHoursUsed: 0.
 self sickHoursAllowed: 80.
 self vacationHoursAllowed: 80.

To invoke the initialize method you'll have to override new since the inherited new doesn't invoke

initialize (at least if Employee is subclassed off Object). The usual way to override new is as follows (one

of the most common errors of beginning Smalltalk programmers is to leave off the ^, which means that the class

itself will be returned, rather than the newly created instance).

Employee class>>new
 ^super new initialize

Before you override new like this, you need to be aware of what super new does. If the new method in

the superclass sends initialize, your initialize method will be invoked twice, first by the superclass

new method, then by the Employee new method. In this situation you don't need to override new since you can

inherit it from your superclass. Since the superclass has an initialize method that presumably initializes

superclass data, your initialize method should start with super initialize. For example, suppose we

have an Employee class, with subclasses of HourlyEmployee and SalariedEmployee. Let's assume that hourly

employees get two weeks of vacation while salaried employees get three weeks. We might have the following:

Employee class>>new
 ^super new initialize

1 Sending new: to a class that is not variable sized will generate an exception.

Instance Creation 3

Employee>>initialize
 self sickHoursUsed: 0.
 self vacationHoursUsed: 0.

HourlyEmployee>>initialize
 super initialize.
 self sickHoursAllowed: 80.
 self vacationHoursAllowed: 80.

SalariedEmployee>>initialize
 super initialize.
 self sickHoursAllowed: 120.
 self vacationHoursAllowed: 120.

While overriding new to be ^super new initialize is the common way of doing it, some people

prefer to use the basicNew message.

MyClass class>>new
 ^self basicNew initialize

Methods that start with basic, such as basicNew and basicAt:, should not be overridden. Their

purpose is to provide the basic functionality, and programmers should be able to rely on this. If you want to

override the functionality, override new and at:. By using basicNew, you don't have to worry about any

superclass sending initialize and thus causing your initialize method to be invoked more than once.

However, you still need to determine whether you should send super initialize in your initialize

method.

Overriding new
It gets frustrating to have to override new just so you can invoke initialize. One solution is to have all

your application classes subclassed of MyApplicationObject, which is subclassed off Object. In

MyApplicationObject, you override new on the class side, and write a default initialize on the instance

side. Now you can override initialize in your class without having to override new.

MyApplicationObject class>>new
 ^self basicNew initialize

MyApplicationObject >>initialize
 "do nothing"

Setting instance specific values
Often when you create a new instance you want to give it some information. In our employee example, we

need at least a name. We may also need to provide a social security number, a salary, and information about

gender, marital status, and number of dependents. There are two choices: to create the instance then set the

variables, and to set the variables as part of instance creation. For the sake of example, let's assume that when

creating an employee object, two pieces of information are absolutely required: a name and a social security

number. If we create the instance then set the variables, we might have something like:

employee := Employee new.
employee name: aName.

Instance Creation 4

employee socialSecurityNo: aSocialSecurityNo.

The problem with this approach is that you are relying on all programmers to remember to set the required

variables after creating the instance. This is okay if the variables are optional, but dangerous if they are required.

If you need to guarantee that the data is set, you are better off writing a instance creation method that forces

programmers to provide the required information. For example, if we write our own instance creation method,

we can create an employee like this:

employee := Employee name: aName socialSecurityNo: aSocialSecurityNo.

What would the name:socialSecurityNo: method look like? One option would be to simply pass on

to an initialization method the information that needs to be set.

Employee class>>name: aName socialSecurityNo: aSocialSecurityNo
 ^super new initializeName: aName socialSecurityNo:
aSocialSecurityNo

This is a reasonable approach if you need an initialization method to initialize other data, such as the

vacationHoursUsed variable shown above. However, if the initialization method does nothing except set the

variables passed in, you might set the data directly. For example, you could use one of the following techniques;

the second one dispenses with the temporary variable.

Employee class>>name: aName socialSecurityNo: aSocialSecurityNo
 | instance |
 instance := super new.
 instance name: aName.
 instance socialSecurityNo: aSocialSecurityNo.
 ^instance

Employee class>>name: aName socialSecurityNo: aSocialSecurityNo
 ^super new
 name: aName;
 socialSecurityNo: aSocialSecurityNo;
 yourself

Overriding new to avoid it being used
If you require programmers to use name:socialSecurityNo: to create instances of Employee, you

could override new to raise an exception. Doing this is not very common, but it does make it easier for

programmers to discover that they are creating employee objects in the wrong way.

Employee class>>new
 self error: 'Please use name:socialSecurityNo: to create Employee
instances'

Avoiding the use of new:
If only the employee name is required, you might be tempted to use new: aName. Resist the temptation.

The instance creation message new: is used to specify the size of a collection, and programmers reading code

should be able to assume that a collection is being created when they see new:. Instead, use name: or

newNamed: or newWithName:. I tend to like method names that tell me both that they are creating a new

instance and what the parameter is.

Instance Creation 5

Sole instances of a class
Some classes have but a single instance. Examples in the system classes are true, which is the sole instance

of True, false, which is the sole instance of False, nil, which is the sole instance of UndefinedObject, and

Processor, which is the sole instance of ProcessorScheduler. The classes UndefinedObject, Boolean, and

ProcessorScheduler override new to prevent new instances being created.

In your own code, if you have a class that should have only one instance, the easiest way to handle this is to

have a class variable that contains the sole instance. When someone tries to create a new instance after the first

one, you can either raise an error or return the sole instance. For example,

MyClass class>>new
 Instance isNil ifFalse: [self error: 'You can only have one
instance of MyClass'].
 Instance := self basicNew.
 ^Instance

MyClass class>>new
 ^Instance isNil
 ifTrue: [Instance := self basicNew]
 ifFalse: [Instance]

	Instance Creation
	Setting default values
	Overriding new

	Setting instance specific values
	Overriding new to avoid it being used
	Avoiding the use of new:

	Sole instances of a class

