
Chapter

4
Variables

In this chapter we'll look at the different types of variable that are available in Smalltalk: instance, class, class

instance, parameter, and temporary. Global variables are a big enough topic in themselves that we cover them in

Chapter 7, Global Variables. Smalltalk also has a few special variables that we will see in Chapter 6, Special

Variables, Characters, and Symbols.

Variable names
Code is easier to understand when all method names and variable names are meaningful and easy to

understand. Make variable names explicit and obvious so that a reader immediately knows the purpose of the

variable. Don't abbreviate names; spell them out in full unless there are abbreviations that are accepted by all

programmers and are part of the project vocabulary. Your goal should be that a programmer can look at your

code and immediately understand what is going on, even without comments in the code. Part of this involves a

good division of responsibility in the code and part involves well thought out names for methods and variables.

Variable names consist of one or more words strung together. The first letter of each word should be

capitalized, and the rest of the letters should be lowercase. The exception to this is the first letter of the name for

which the following rule applies: Instance, parameter, and temporary variables should start with a lowercase

letter. Class, class instance, and global variables should start with an uppercase letter. Some people leave

acronyms as uppercase; I try to avoid having two capital letters in a row as it makes it just that little bit harder to

break the name into words. Here are some examples of variable names.

"Instance or temporary variables"
employeeName
collectionOfStrings
upperLeftCornerOfBox

"Parameter"
aNumber
aCollectionOfEmployees

"Class, Class instance, or Global variables"
Employee

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

Variables 2

DaysInMonth
MonthNames

I've always found it useful to prefix class names with an application or component prefix because I like to

know where a class comes from when I see it in the code. For example, if you have an accounting application

with payroll, accounts payable, and general ledger components, you might have prefixes such as Pr, Ap, Gl for

the components, then something like Aac for the classes used for the communication between components

(Accounting Application Communication). General support classes that will be used across applications or

components get a general company prefix, or a prefix such as Sup.

Instance variables
Suppose we have a class called Friend. Each friend in our application has a first name, a last name, and a

phone number. The class definition for Friend specifies that each instance of Friend has three variables:

firstName, lastName, and phone. We specify these instance variables in the class definition.

Object subclass: #Friend
 instanceVariableNames: 'firstName lastName phone'
 classVariableNames: ''
 poolDictionaries: ''
 category: 'My–Category'

When we create a new instance of Friend, it will have its own values in the instance variables. We might

create an instance of Friend by sending the following instance creation message to the class Friend.

friendOne := Friend
 newLastName: 'Doe'
 firstName: 'John'
 phone: '555–5555'

If we then create another friend, friendTwo, it has no effect on friendOne, because friendOne has its own

values in the instance variables.

friendTwo := Friend
 newLastName: 'Smith'
 firstName: 'Jane'
 phone: '111–1212'

The two instances of Friend have their own values in the instance variables, independent of the values in the

other instance. If we change the value of one instance variable, it has no effect on the other friend. For example,

we can change the phone number for John Doe without affecting the phone number of Jane Smith.

Class variables
Suppose we have several instances of class Date. Each instance will be unique, and will have its own values

for the instance variables defined by Date (these are year, the year, and day, the number of days since the

beginning of the year). We want to know the name of the month for each of these instances. Something has to

keep track of the names of the months, and since month names are associated with dates, we might as keep track

of the names somewhere in the Date class. However, we don't need to waste space by having each instance of a

Date keep this array. Instead, we put the array of month names in a class variable. This lets the Date class keep

Variables 3

track of the array, so we only have one copy of the array. All instances have access to the class variables of their

class, so each instance of Date can access the month name array. In fact, Date has many class variables, as

shown in the following class definition.

Magnitude subclass: #Date
 instanceVariableNames: 'day year '
 classVariableNames: 'DaysInMonth FirstDayOfMonth MonthNames
SecondsInDay WeekDayNames '
 poolDictionaries: ''
 category: 'Magnitude–General'

Here are a two examples where instances of Date reference some of the class side variables. The messages

monthName and daysInMonth look at the arrays held in the class variables MonthNames and DaysInMonth.

(Date newDay: 115 year: 1960) monthName. #April
Date today monthName. #October
Date today daysInMonth. 31

All instances can directly reference their class variables, although it may be preferable to reference them

through accessors, which we'll look at later in this chapter. Although instances have access to the class variables

of their class, the class itself does not have access to any instance variables of its instances, and in fact, the class

doesn't usually even know that it has instances. You can inspect the class variables of a class by inspecting the

class then inspecting the classPool variable1.

Classes referencing their instances (advanced)
Despite the fact that classes don't by default know about their instances, you will sometimes find that classes

manage their instances. You may also find that there is a concept of the current instance of a class. Combining

these concepts (which doesn't usually happen), you might see something like the following in a class definition.

Note that what we describe here is very simplistic and is just designed to point out the concepts.

Object subclass: #MyClass
 instanceVariableNames: 'instVar1 instVar2 '
 classVariableNames: 'Instances Current '
 poolDictionaries: ''
 category: 'MyCategory'

When a new instance is created, it is stored in a collection of instances held by the Instances class variable.

There is also a method to retrieve and set the current instance so that the rest of the system knows which instance

of MyClass they should be working with.

MyClass class>>initialize
 "self initialize"
 Instances := OrderedCollection new.

1 Alternatively, you can send the classPool message to the class (eg, Date classPool). If you know the
name of the class variable, you can do something like Date classPool at: #DaysInMonth.
(Interestingly, you can inspect the class variables of Object directly, just by typing the variable name in a text
window such as a workspace or a Browser, then inspecting the name. This works because in a text window, self
is either nil or the class that you are browsing. Because of inheritance, both of these objects have direct access to
the class variables of their superclasses, and so can see the class variables of Object.)

Variables 4

MyClass class>>new
 "This shows the concepts"
 newObject := super new initialize.
 Instances add: newObject.
 ^newObject

MyClass class>>new
 "This shows a tighter implementation"
 ^Instances add: super new initialize.

MyClass class>>current
 ^Current

MyClass class>>current: anInstance
 "Set the current instance and inform dependents, telling them the
old value"
 old := Current.
 Current := anInstance.
 self changed: #current with: old

This last method shows some code associated with the Smalltalk dependency mechanism. We'll see more

about this in Chapter 19, The Dependency Mechanism, but for the time being we'll simply remark that it

provides a way for other objects to be told when the current instance has changed and gives them a chance to

take whatever actions are meaningful for them as they change to the new current instance.

Class instance variables
Besides class variables and instance variables, Smalltalk provides a variable called a class instance variable.

It's a variable defined on the class side, and provides a way to hold a value that is potentially different for each

subclass of the original class. Instances of each subclass all have access to the variable, but instances of one

subclass will see a different value than will instances of another subclass.

It's not very common to see examples of class instance variables, but they can be useful. Here's an example of

one such use. Suppose that your application has a centralized error message facility (we talk more about this in

Chapter 20, Error Handling). However, each component of the application wants to have its own error messages

and its own numbers, each prefixed by the appropriate tag. By having separate subclasses for the different

components, programmers can work on the components in isolation without having to worry about message

symbol or number conflicts. The component error messages classes are subclassed off ErrorMessages. Note that

all the definitions and methods below are on the class side.

ErrorMessages class
 instanceVariableNames: 'Messages'

ErrorMessages class>>initialize
 Messages := Dictionary new.

ErrorMessages class>>number: aSymbol
 ^(Messages at: aSymbol ifAbsent: [self notFoundError: aSymbol])
key printString

ErrorMessages class>>notFoundError: aSymbol
 ^0–>('Symbol <', aSymbol, '> not found')

ComponentOneErrorMessages class>>initialize

Variables 5

 super initialize.
 Messages
 at: #notFound put: 1 –> 'Account not found';
 at: #duplicate put: 2 –> 'Duplicate account'.

ComponentOneErrorMessages class>>number: aSymbol
 ^'C1–', (super number: aSymbol)

ComponentTwoErrorMessages class>>initialize
 super initialize.
 Messages
 at: #duplicate put: 1 –> 'File already exists';
 at: #notFound put: 2 –> 'File not found'.

ComponentTwoErrorMessages class>>number: aSymbol
 ^'C2–', (super number: aSymbol)

To sum up, class instance variables are used when you need a class variable to store information that may be

different for each subclass. We show another use of class instance variables in Chapter 30, Testing, where we

use them to hold the display name of the test case subclasses.

Parameters
Parameters (or arguments) are objects that are passed into a method or a code block. Smalltalk doesn't have

type checking, so you can pass any object as a parameter to any method. Of course, when you send a message to

the parameter object, there will be problems if the object doesn't understand the message — if the object is not of

the appropriate type. (Some people jokingly say that Smalltalk is very strongly typed — all arguments must be

objects!) Unlike the other types of variable, you can't assign a different value to a parameter variable.

Fortunately, the compiler will catch this, so you won't even be able to accept the following.

MyClass>>doSomethingWith: anObject
 anObject := 3.

However, you can modify the contents of a parameter, so it's perfectly legitimate to do the following,

although not necessarily good style.

MyClass>>modifyCollection: aCollection
 aCollection add: 3.

Method parameters
In the code shown above, we've seen various examples of messages and parameters. Shown below are a few

examples of method and parameter names as shown in the various definitions.

Date class>>newDay: dayCount year: referenceYear
Object>>changed: anAspectSymbol with: aParameter
OrderedCollection>add: newObject
Dictionary>>at: key put: anObject
MyClass>>modifyCollection: aCollection

The objects after the colons are the parameters. Why do the parameters have these names? There are two

types of naming scheme: you can name the parameter according to its content (eg, lastName, salary, price,

quantityOnHand), or according to its type (eg, anInteger, anArray, aSymbol) As a general rule you'll find

Variables 6

instance and temporary variables named according their content, while method parameters are named according

their type. You'll often see methods that have parameters with names such as aString, aCollection,

anEmployee, aRobot. This type information tells the programmer a lot about the messages that can be sent to the

object. Sometimes, however, type information is not enough.

In the examples above, the parameter to newDay: could have been anInteger, but this would provide very

little information about what the content of the integer should be. So, the parameter is named dayCount.

Similarly, we might have a method that creates a new instance of Employee as follows.

Employee class>>firstName: firstName lastName: lastName

It makes more sense to give the parameters names such as firstName and lastName rather than aStringOne

and aStringTwo. Even names such as aFirstNameString don't add a lot of information, especially since the

method will probably not do anything with the parameters other than store the values in instance variables.

To summarize, method parameters are often named according to their type. However, there will be situations

where naming them according to their content makes more sense, and situations where naming them according

to a mixture of type and content makes sense.

Block parameters
Code blocks contain code that is not executed until the block is sent a message from the value family. To

pass a parameter to a block, the message will have to be one that has a parameter, such as value: or

value:value:. For example, we might have something like the following.

block := [:nameString |Transcript cr; show: 'The name is ',
nameString].
block value: 'Alec'.

block := [:nameString :age |
 Transcript cr; show: 'The age of ', nameString, ' is ', age
printString].
block value: 'Dave' value: 12.

You probably won't often use blocks with more than one or two parameters, but if you do, you can send

value:value:value: for blocks with three parameters, or valueWithArguments: anArray if you

have more than three. For example, a block with five parameters might look like the following. If the number of

array elements doesn't match the number of parameters, you'll get an exception.

[:parm1 :parm2 :parm3 :parm4 :parm5 | self doSomething]
 valueWithArguments: #(99 88 77 66 55).

 You'll see block parameters used in the enumeration methods of collections. For example,

aCollection do: [:each | Transcript cr; show: each printString].
aCollectionOfNumbers collect: [:each | each * 30].
aCollectionOfNumbers inject: 0 into: [:subtotal :each | subtotal +
each].

When naming the parameters of a block that is used when iterating over a collection, one convention is to use

the parameter name each. This tells you instantly that the variable is the current element of the collection.

Variables 7

Alternatively, use the name index if you know that the variable is an index, or the name char if the variable is a

character in a string.

1 to: 5 do: [:index | self doSomethingUsing: index].
'now is the time' do: [:char | self doSomethingUsing: char].

Generally, the only time I would use a name other than each, index or char for the collection element is if

there are nested collection iterations, and I can't use the same name in both of them. For example,

 #('cat' 'dog' 'gerbil')
 collect: [:pet | #('milk' 'water' 'oj')
 collect: [:drink | pet –> drink]]

Temporary variables
Temporary variables are variables that exist only for a short time: for the duration of a method or the duration

of a block of code. There are several reasons to use a temporary variable. The most important reason is to

capture a value that can't be regenerated. For example, if you are reading an object from a stream or a shared

queue, and you want to use that object several times, use a temporary variable to capture it. For example:

request := sharedQueue next.
originator := request originator.
requestTime := request creationTime.

Another reason to use a temporary variable is to avoid having to repeat expensive operations. For example, if

you are comparing a variable with a value from a database, it's appropriate to store the database value in a

temporary variable. Compare the two examples below.

aCollection detect: [:each | each = self myValueFromDatabase]
ifNone: [nil].

databaseValue := self myValueFromDatabase.
aCollection detect: [:each | each = databaseValue] ifNone: [nil].

A third reason to use a temporary variable is to increase performance by reducing the number of message

sends. For example, in the first example below, we have to do several identical message sends several times. It

saves a lot of message sends if we do it the way shown in the second example.

self checkAddress: (employeeCollection at: employeeId) address.
self validateSalary: (employeeCollection at: employeeId) salary.
self printCheck: (employeeCollection at: employeeId).

employee := (employeeCollection at: employeeId).
self checkAddress: employee address.
self validateSalary: employee salary.
self printCheck: employee.

A fourth reason to use a temporary variable is to make it easier to understand the code. Sometimes it can be

difficult to understand what object we have as a result of a complex sequence of message sends. While we may

not need to use a temporary variable if we only do this sequence of message sends once, it can make the code

more readable to store the result of this sequence in a well named temporary variable. (An alternative approach is

to compute the complex result in another method and replace the complex message sends with a single message

Variables 8

send.) For example, the code below makes it easy to see what is going on without having to read through the sort

block code.

MyClass>>mySortByBirthday: aCollection
 | birthdaySortBlock |
 birthdaySortBlock := [:first :second | first birthday <= second
birthday].
 ^aCollection asSortedCollection: birthdaySortBlock.

Temporary to the method
Temporary variables are named between vertical bars before any code in the method. For example,

copyWith: newElement
 | newCollection |
 newCollection := self copy.
 newCollection add: newElement.
 ^newCollection

You can type in the temporary variable name between the vertical bars, or you can let the compiler generate

the name between the bars. The compiler will generate the names of temporary variables in the order in which

they occur in the method. I usually let the compiler generate the names, but this sometimes leads to problems. If

you give a temporary the same name as an instance variable, the compiler will assume that you are referring to

the instance variable and not generate the name for you. (If you type the name in yourself, you will be warned

that a variable of that name already exists, perhaps in an outer scope). On the class side, if you name a temporary

variable name and don't put it between vertical bars yourself, the class itself will be given a new name when the

code is run!

Temporary to the block
Temporary variables in blocks are enclosed between vertical bars, just as method temporaries are. For

example,

[| result |
result := self myDoSomething.
...]

If you have block parameters and block temporary variables, they are defined as follows. Note that a vertical

bar appears after the parameters, and the temporary variables are defined between their own vertical bars. So

there are two vertical bars.

myMethod
 aCollection do: [:each | | result |

BlockClosures have better performance if all the variables they reference are local to the block. So, rather

than letting the compiler generate temporary variable definitions at the top of the method, look to see if it is

possible to make all block references internal to the block.

Variables 9

Global variables
Chapter 7, Global Variables, covers global variables, so we won't discuss them here.

Variables as slots
Variables are simply slots which hold an object. The object itself exists somewhere in computer memory, but

it is bound to the variable. If we bind a different object to the variable, the first object may no longer be bound to

any variable. When an object is not bound to any variable — ie, it is no longer referenced, the object is available

to be garbage collected. In concept it is floating somewhere in memory with nothing attached to it, and the

garbage collector comes along and sweeps it up.

Because an object exists separately and is just bound to a variable, there's no reason that an object can't be

bound to many variables simultaneously. We could easily have a situation such as the following. When you

inspect d, you'll see that it contains three items, the numbers 1 and 2, and 3. Multiple assignments, as shown in

the example, are legal but bad style.

a := b := c := d := OrderedCollection new.
a add: 1.
b add: 2.
c add: 3.
d inspect.

In this example, we assign the same instance of OrderedCollection to all the variables. When we modify the

collection via one variable, its contents are changed and that change is visible to all variables that have been

bound to it. This is illustrated in Figure 4-1.

Instance of
OrderedCollection

a

b

c

d

Figure 4-1.
All variables holding same object.

On the other hand, if we were to do the following, we would find that b contains the number 2, while d

contains the numbers 1 and 3.

a := b := c := d := OrderedCollection new.
a add: 1.
b := 2.
c add: 3.
b inspect.
d inspect.

In this example, we assign a different value to b, and bind it to the object 2 instead of the instance of

OrderedCollection. This is illustrated in Figure 4-2.

Variables 10

Instance of
OrderedCollection

a

d

c

b 2

Figure 4-2.
Variables holding different objects.

Accessors
Accessors are methods that allow you to get and set the values of instance variables and class variables. Since

instance variables are more heavily used than class variables, you will see accessors most often used with

instance variables. Because they get and set variables, accessors are sometimes known as getters and setters, and

when you write accessors, you will usually write both a getter and a setter. The convention is to name them the

same as the instance variable. For example,

Employee>>salary: aNumber
 salary := aNumber

Employee>>salary
 ^salary

If you choose to use lazy initialization (initializing a variable only when it is first needed) rather than to

initialize instance variables in an initialize method, the salary accessor would look something like:

Employee>>salary
 ^salary isNil
 ifTrue: [salary := 0]
 ifFalse: [salary]

Lazy initialization is a reasonable approach when variables are accessed infrequently or not at all, and the

cost of initialization is high. Otherwise, it's probably worth initializing variables in an initialize method.

Accessors for collections
If your variable contains a collection, what should the getter return? The usual answer is to return a copy of

the collection. Other classes will be able to take actions based on the contents of the collection, but they won't be

able to directly add to or remove from the collection. As well as providing accessors, you'd also provide methods

to add to and remove from the collection. For example,

Employee>>skills
 ^skillsCollection copy

Employee>>addSkill: aSkill
 ^skillsCollection add: aSkill

Employee>>removeSkill: aSkill
 ^skillsCollection remove: aSkill ifAbsent: [nil]

However, you might want to consider not providing any direct public interface to your collections. After all,

you may decide to change the collection from an OrderedCollection to an Array or a Dictionary and you don't

Variables 11

want to be concerned about how other software is accessing the collection. By providing a few accessing

methods such as the addSkill: and removeSkill: methods shown above, you don't have to expose the

actual collection at all. (Another approach would be to provide a getter that always converts the actual collection

into an OrderedCollection and returns this.)

The five accessor approach
I have a friend who uses what he calls the "fascist" approach to instance variable accessors. For each instance

variable, there are five accessors. Using a variable called salary as an example, we would have the following

accessors in this scheme. The only two public accessors are salary and salary:. The others are all private.

The public accessors are allowed to have side effects (for example, establishing connections), while the private

methods are not allowed to have side effects2. Not many people use a technique this strict however.

Employee>>salary
 "Answer salary. This accessor is allowed to have side effects."
 self myGetSalary == nil
 ifTrue: [self mySetSalary: self myComputeSalary]
 ^self myGetSalary

Employee>>myGetSalary
 "Answer salary. No side effects are allowed."
 ^salary

Employee>>myComputeSalary
 "Answer the initial value for salary, possibly computing it"
 ^self baseSalaryForGrade * self locationFactor

Employee>> salary: aValue
 "Set the salary. This accessor is allowed to have side effects"
 self mySetSalary: aValue.
 self informPayrollSupervisor

Employee>>mySetSalary: aValue
 "Set the salary. No side effects are allowed"
 salary:= aValue

Accessors or Direct Referencing
There are schools of thought about how instances should reference their instance variables. One school says

that instance variables should always be referenced indirectly, through accessor methods. The other school says

that sometimes instance variables should be referenced directly. Let's look at these two ideas.

2 Jumping well ahead of ourselves, subclasses of ValueModel provide two setters, value: and setValue:. This
allows objects to use value: when they want to notify dependents of changes, and setValue: when they want to
make a change without notifying dependents. This latter option helps avoid infinite loops when updating a value
as a result of a change notification from a dependent. Don't worry if this doesn't make any sense now—we'll
cover dependencies later. Below are examples of both methods.

ValueModel>>value: newValue
 "Set the currently stored value, and notify dependents."
 self setValue: newValue.
 self changed: #value

ValueHolder>>setValue: aValue
 "Just initialize the value without notifying dependents of a change. "

 value := aValue

Variables 12

Direct referencing
The advantages of referencing instance variables directly are threefold. First, you don't have to write accessor

methods (although the VisualWorks CodingAssistant helps you with this). Second, it's a little more efficient to

access them directly because you save a message send on each access (although not much, since the compiler

can optimize these message sends). The most significant advantage of referencing variables directly, however, is

that you preserve the encapsulation of the object. Any time you write an accessor, the whole world has access to

the instance variables, which violates the principle of encapsulation. Sometimes you want to give access to

instance variables, but much of the time you'd like to keep private the internal details of how the class works. In

Celebrating 25 Years of Smalltalk, Ward Cunningham says: "But if I could change anything...I'd like to see

people stop giving away all their instance variables with accessing methods."

Referencing through accessors
Requiring all access to go through accessors makes it easier to preserve the public interface to an object when

the underlying implementation changes. You may get rid of instance variables or combine them in some way,

but as long as you can compute the information that was returned by a getter, and as long as you can make use of

the information that was given to a setter, you can preserve the same interface to the world. To use a trivial

example, suppose we have an Account object which contains a balance instance variable. Perhaps the accessors

at one time were:

Account>>balance: aFloat
 balance := aFloat

Account>> balance
 ^balance

We decide that we'd rather store the value internally in cents rather than in dollars, so we modify the

accessors to look like:

Account>>balance: aFloat
 balance := (aFloat * 100) rounded

Account>> balance
 ^balance / 100

Other advantages to accessors include: If you want to change an instance variable, and instance variables are

accessed directly, you have to look through the class and all its subclasses to find references to the variable; on

the other hand, if you have accessors on all your instance variables, all you have to do is browse senders of the

accessor messages. If you have long methods, it can be difficult to tell what are instance variables and what are

temporary variables if you don't use accessors. Having set accessors makes it easier to notify dependents of

changes, and to mark an object as modified or dirty when it has changed. For example, combining these last two,

you might have a setter that looks like:

MyClass>>weight: aNumber
 oldWeight := weight.
 weight := aNumber.
 self markDirty.
 self changed: #weight with: oldWeight

Variables 13

Which way to go
My view is that when implementations change, it's usually easier to find and change the references to

variables than to preserve an obsolete interface. In code I write for myself, I tend to use accessors only when I

want to provide public access to the variables — sometimes this means providing a getter but not a setter. At

work, I follow whatever standards prevail (which is usually to use accessors for all instance variables) because I

believe it's more important to conform to the standard than be inconsistent.

If you choose to use accessors, but are concerned about violating encapsulation, you can use the my prefix

described in Chapter 3, Methods. This allows you to use accessors and also preserve the encapsulation, assuming

that people don't violate the rules about methods starting with my. In Chapter 29, Meta-Programming, we will

show an extension to Class that automatically creates both public and private accessors for all our instance

variables when we define a class.

Chains of accessors
One thing to beware of when writing accessors is creating long chains of accessors to get hold of an object in

an object in an object in an object. For example, we might have something like:

companyName := employee department division company companyName.

The problem with this approach is that it violates encapsulation in a big way. Not only do you know the

implementation details of the employee, but you also know and rely on the instance variables for the department,

the division, and the company. This makes the system much more fragile because you can't make a change to

any of the objects without worrying about how it will affect code. Instead, it's better to encapsulate the inner

details. Provide accessors on the outer object that will return inner details. In our example, we might write

company and companyName accessors on the employee, so we can now write:

companyName := employee companyName.

This means that we can restructure how the company is organized, perhaps removing the division layer, or

perhaps adding a country layer, without having to change the code that needs the company name for the

employee. Similarly, we would probably write company and companyName methods on Department and on

Division for the same reason. Our accessors on Employee might look like the following.

Employee>>companyName
 ^self company companyName

Employee>>company
 ^self department company

This leads to the idea that to maintain loose coupling between classes, a method should send messages only

to self, super, to its class, to instance or class variables, to a parameter, or to an object it creates. If the method

sends messages to any other object it is either referencing a global variable, or it knows something about the

internal details of the object. This is illustrated in Figure 4-3.

Variables 14

self

super

self class

self instVar

self classVar

aParameter

SomeClass new

someMethod: aParameter
self foo.
super foo.
self class foo.
self instVarOne foo.
instVarTwo foo.
self classVarOne foo.
classVarTwo foo.
aParameter foo.
thing := MyThing new.
thing foo.

Figure 4-2.
Message sends for loose coupling.

Documentation on variables
All instance, class, and class instance variables should be documented in the class comments. You should

describe at least the type of the variable, its purpose, and any special information that will be useful to other

programmers. For example, here is part of the class comment for Date.

Instance Variables:
 day <Integer> from 1 to (365 | 366)
 year <Integer> typically after the year 1900

Class Variables:
 DaysInMonth <Array of: Integer> the number of days in each
month
 MonthNames <Array of: Symbol> the names of the 12 months

Once you have decided what information your project requires to be in a class comment, you can customize

the class comment template by modifying the commentTemplateString method in

ClassDescription.

	Variables
	Variable names
	Instance variables
	Class variables
	Classes referencing their instances (advanced)

	Class instance variables
	Parameters
	Method parameters
	Block parameters

	Temporary variables
	Temporary to the method
	Temporary to the block

	Global variables
	Variables as slots
	Accessors
	Accessors for collections
	The five accessor approach
	Accessors or Direct Referencing
	Direct referencing
	Referencing through accessors
	Which way to go

	Chains of accessors

	Documentation on variables

