Prof. Dr. Oscar Nierstrasz

Smalltalk-O\U
Bits of History, Words of Advice

Glenn Krasner, Editor

Xerox Palo Alto Research Center

Addison-Wesley Publishing Company
Reading, Massachusetts * Menlo Park, California
London » Amsterdam * Don Mills, Ontario * Sydney

This book is in the

Addison-Wesley series in Computer Science
MICHAEL A. HARRISON

CONSULTING EDITOR

Cartoons drawn by Jean Depoian

Library of Congress Cataloging in Publication Data
Main entry under title:
Smalltalk-80 : bits of history, words of advice.

Bibliography: p.

Includes index.

1. Smalltalk-80 (Computer system) I. Krasner,
Glenn. II. Title: Smalltalk-eighty.
QAT6.8.5635558 1983 001.64°.25 83-5985
ISBN 0-201-11669-3

Reprinted with corrections, June 1984

Copyright © 1983 by Xerox Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

ISBN 0-201-11669-3
CDEFGHIJ-AL-8987654

Preface

The Software Concepts Group of Xerox Palo Alto Research Center
(PARC) has been working on the problem of how to give users access to
large amounts of computing power. We have concentrated our efforts
on the study of software systems, rather than on the creation of specific
hardware packages. Our method has been to develop a software system
called Smalltalk, to create applications in that system, and then, based
on our experiences developing the applications, to design the next sys-
tem. We have developed and used three major Smalltalk systems over
the last 10 years, as well as a few minor variations.

We have documented and released the latest of these systems, the
Smalltalk-80 system. We published a description of the system and a
complete specification of its implementation in the book, Smalltalk-80:
The Language and Its Implementation. This first book, however, does
not cover the use of the system or programming style for writing large
applications in the system. These topics are covered in the forthcoming
books Smalitalk-80: The Interactive Programming Environment and
Smalltalk-80: Creating a User Interface and Graphical Applications.
Nor does the first book discuss implementation techniques beyond the
formal specification, which is the subject of this book, Smalltalk-80:
Bits of History, Words of Advice.

To check the accuracy and the clarity of the first book, we invited a
number of groups outside of Xerox to build implementations of the
Smalltalk-80 system. Those groups uncovered problems with the writ-
ten description, and with the system itself, which we then corrected.
They also formed the beginning of a community of Smalltalk

iv
Preface

implementors with whom we can discuss our ideas, and from whom we
can learn about successful and less successful implementation experi-
ences. Paul McCullough of Tektronix suggested that all the
implementors submit papers describing their experiences to a software
engineering journal or -to collect papers from each group into book
form. This book, then, is the outcome of that suggestion.

The papers in this book should be of value to other Smalltalk-80
implementors. To implement the Smalltalk-80 system, one has to match
the specification with his or her own hardware environment. Each of
the groups represented in this book had different experiences with this
problem. In addition, some of the groups tested (or speculated about)
various schemes for better Smalltalk-80 virtual machine implementa-
tions.

In addition to Smalltalk-80 implementors, software engineers should
be interested in the papers in this book. Although they are written in
the context of Smalltalk-80 implementations, the papers cover the gen-
eral software engineering topics of managing large software projects,
virtual memory design and implementation, software caching mecha-
nisms, and mapping software needs onto hardware design.

The papers in this book raise more issues than they resolve.
Smalltalk is still quite young—the Smalltalk-80 system is just a snap-
shot of research in progress. There are many other issues that need to
be raised and many ideas that need to be tested before some of the reso-
lutions can be found. It is our hope that this collection of works will get
other implementors thinking about key issues in Smalltalk implemen-
tations.

Part One of this book is a collection of papers that provide some
background and history of the Smalltalk-80 implementation. The first
paper is by Adele Goldberg, manager of the Xerox PARC Software Con-
cepts Group (SCQG); it describes the history of releasing the Smalltalk-80
system to the non-Xerox world. Dan Ingalls, who has been the chief ar-
chitect of the many Smalltalk implementations, tells how the previous
systems led up to the Smalltalk-80 system. Glenn Krasner, also of SCG,
presents the design of the format of files that are used for sharing
Smalltalk-80 code among implementations. The last paper in this sec-
tion is by Allen Wirfs-Brock of Tektronix, and explores the various de-
sign decisions that Smalltalk-80 implementors may face.

In Part Two we present papers that describe the experiences four
implementors had in bringing their systems to life. Paul McCullough
writes about the process they went through at Tektronix, including a
step-by-step description taken directly from their logs. His paper points
out how valuable the outside implementors were at discovering prob-
lems with the system and its documentation. Joe Falcone and Jim
Stinger describe the experience they had at Hewlett-Packard bringing
up a couple of implementations. Peter Deutsch, of Xerox SCG, gives

\
Preface

some details of how he took advantage of hardware architecture to in-
crease the performance of his Smalltalk-80 implementation. Stoney
Ballard and Steve Shirron describe an implementation they made at
Digital Equipment Corp., which differs radically from the suggested im-
plementation of the storage manager, in order to provide improved per-
formance.

Descriptions of implementation experiences help others make their
design choices; actual measurements and analyses provide additional
concrete help. Part Three is a collection of measurements made by the
implementation groups. The first paper, by Kim McCall of Xerox SCG,
describes a set of benchmarks that is provided in the Smalltalk-80 sys-
tem to help measure the performance of an implementation. All the im-
plementation groups were willing to run these benchmarks, and a
comparison of their results is included in the paper. This gives a num-
ber of implementations against which new implementors can measure
their progress. Rick Meyers and Dave Casseres of Apple Computer pro-
vide an interesting set of analyses of their MC68000-based implementa-
tion. David Ungar and David Patterson of the University of California
Berkeley give a before-and-after description of the process of measuring
an implementation, optimizing the time-consuming parts, and measur-
ing the effects of the optimizations. Joe Falcone made measurements of
the Hewlett-Packard implementation that compare static properties
with dynamic properties of the system. Finally, Tom Conroy and Ed
Pelegri-Llopart of UC Berkeley present an analytic model for measur-
ing the potential performance gains of a particular cache scheme for
Smalltalk-80 implementations.

In Part Four we present papers that look toward the future of
Smalltalk systems and propose ideas for extending the Smalltalk-80
system beyond its initial form. The first paper is a description by Ted
Kaehler and Glenn Krasner of Xerox SCG of an object-oriented virtual
memory design. Steve Putz, also of SCG, presents a solution to the prob-
lem of coordinating changes made by many people to an evolving
Smalltalk-80 system. Jason Penney describes his implementation of a
file system at Tektronix, and discusses the use of the Smalltalk-80 sys-
tem for programming. From the University of Washington, Guy Almes,
Alan Borning, and Eli Messinger, present an analysis of the potential
for implementing the Smalltalk-80 system on the Intel iAPX432
microprocessor. Although they did not actually implement the system,
their paper provides a good analysis of how to match an object-oriented
system to object-oriented hardware. Applying compiler technology, Rob-
ert Hagmann of the University of California, Berkeley, proposes ways
to increase the performance of a Smalltalk-80 implementation. The last
paper, by Scott Baden of the University of California, Berkeley, pro-
poses hardware architecture support that would enhance the perfor-
mance of implementations.

vi

Preface

Acknowledg-
ments

We would like to thank the authors, their co-workers, and their organi-
zations for their contributions to this book, for their diligence during
the release and review process, and for their willingness to be open
about the strengths and weaknesses of their Smalltalk-80 implementa-
tions. We would also like to thank the Xerox Research management for
allowing us to release the Smalltalk-80 system, thus widening the com-
munity of Smalltalk implementors with whom we can share experi-
ences and insights.

Many people contributed to the production of this book. Each author
also acted as an editor of an early draft of another author’s paper.
Janet Moreland helped coordinate this swapping with copying and
mailing. Doug Carothers answered legal questions. Ted Kaehler provid-
ed other bits of help, and Frank Zdybel added some words of his own.
Dave Robson built the translator that allowed us to deliver manuscripts
electronically. Eileen Colahan of the International Computaprint Corpo-
ration was extremely cooperative and flexible in turning these electron-
ic manuscripts into print. The cartoons in the book are by Ted Kaehler,
redrawn by Addison-Wesley artist Jean Depoian. Adele Goldberg
merged the images into the cover design with help from Rebecca
Cannara. Particular thanks go to production editor Fran Fulton for her
cooperation and patience, and to Jim DeWolf and Cheryl Wurzbacher of
Addison-Wesley.

Registered trademarks mentioned in this book are: AED-512, Ad-
vanced Electronic Design, Inc.; UNIX, Bell Laboratories; DEC,
DECSYSTEM, DECSYSTEM20, UNIBUS and VAX, Digital Equipment
Corporation; HP-IB, Hewlett-Packard; GPIB, National Instruments;
BitPadOne, Summagraphics Corporation; and Smalltalk-80, Xerox Cor-
poration.

Palo Alto, California G. E. K.
June 1983

Contents

PART ONE Background

1

2

3
4

The Smalltalk-80 System Release Process
Adele Goldberg

The Evolution of the Smalltalk Virtual Machine
Daniel H. H. Ingalls

The Smalltalk-80 Code File Format Glenn Krasner

Design Decisions for Smalltalk-80 Implementors
Allen Wirfs-Brock

PART TWO Experiences Implementing the Smalltalk-80 System

5

6

7

Implementing the Smalltalk-80 System: The
Tektronix Experience Paul L. McCullough

The Smalltalk-80 Implementation at Hewlett-
Packard Joseph R. Falcone, James R. Stinger
The Dorado Smalltalk-80 Implementation: Hard-
ware Architecture’s Impact on Software
Architecture L. Peter Deutsch

The Design and Implementation of

VAX/Smalltalk-80
Stoney Ballard, Stephen Shirron

29

41

57

59

79

113

127

vii

viii

Contents

PART THREE

PART FOUR

Measurements and Analyses of Implementations

9
10

11

12

13

The Smalltalk-80 Benchmarks Kim McCall

An MC68000-Based Smalltalk-80 System
Richard Meyers, David Casseres

Berkeley Smalltalk: Who Knows Where the Time
Goes? David M. Ungar, David A. Patterson

The Analysis of the Smalltalk-80 System at
Hewlett-Packard Joseph R. Falcone

An Assessment of Method-Lookup Caches for
Smalltalk-80 Implementations
Thomas J. Conroy, Eduardo Pelegri-Llopart

Proposals for the Future of the Smalltalk-80 System

14

15

16

17

18

19

LOOM — Large Object-Oriented Memory for
Smalltalk-80 Systems
Ted Kaehler, Glenn Krasner

Managing the Evolution of Smalltalk-80 Systems
Steve Putz
Implementing a Smalltalk-80 File System and the

Smalltalk-80 System as a Programming Tool
D. Jason Penney

Implementing a Smalltalk-80 System on the Intel
432: A Feasibility Study
Guy Almes, Alan Borning, Eli Messinger

Preferred Classes: A Proposal for Faster
Smalltalk-80 Execution Robert Hagmann

Low-Overhead Storage Reclamation in the
Smalltalk-80 Virtual Machine Scott B. Baden

Index

151
153

175

189

207

239

249

251

273

287

299

323

331
343

s
ey %M‘Gﬁ'z’?im\»
N \

NG AFTER A
TALK CRASH

The Smalltalk-80 System
Release Process

Adele Goldberg

Manager, Software Concepts Group
Xerox Palo Alto Research Center
Palo Alto, California

‘oduction

The Smalitalk-80 system has its roots in the Xerox Palo Alto Research
Center starting more than 10 years ago. During a decade of research,
three major systems were designed, implemented, and tested with a va-
riety of users. The systems were named for the year in which they were
designed. The first two were Smalltalk-72 and Smalltalk-76. The latest
version, called the Smalltalk-80 system, was developed to be adaptable
for implementation on a large number and variety of computers.

The Smalltalk research efforts focus on increasing the support that
computing systems can provide to users who are not computer scientists
by profession. These efforts are centered on the visual impact of
bitmapped graphics, on highly interactive user interfaces, and on in-
creased flexibility in terms of user programmability. Among the out-
comes of this work were the basic concepts of windows, menus (textual
and iconic), and scroll bars. Implementations of these concepts are used
to expand the virtual space of a display screen; they typically empha-
size the use of pointing devices rather than keyboards for selecting ob-
jects (documents, devices) and operations on objects (commands).

In 1979 and 1980, requests and clearances were agreed upon within
the Xerox Corporation to permit the dissemination of the Smalltalk-80

Copyright © Xerox Corporation 1982. All rights reserved.

4
The Smalltalk-80 System Release Process

system to the non-Xerox world. The stated purposes of this dissemina-
tion were to:

1. expand the community of Smalltalk programmers in order to gain
more general experience with how people can use the language;

2. expand the community of programming language researchers who
study aspects of the Smalltalk style of programming;

3. influence hardware designers to consider ways in which to provide
increased performance for the Smalltalk style of interaction; and

4. establish a standard for Smalltalk as an object-oriented program-
ming language and a graphics-based, interactive program develop-
ment environment.

The dissemination was planned in three parts: a series of introductory
articles, a book giving detailed system specifications, and a magnetic
tape containing the system itself. The series of articles would provide
an early and less formal introduction to the Smalltalk-80 system. Ulti-
mately, these articles were published in the August 1981 special issue
of Byte magazine. The system specification was divided into two major
components —the Virtual Machine and the Virtual Image. The Virtual
Machine for a particular hardware system consists of an interpreter, a
storage manager, and primitives for handling the input/output devices.
The Virtual Image is a collection of objects that make up descriptions of
classes providing basic data structures (including numbers), basic
graphics and text, compiler, decompiler, debugger, and viewing and
user interface support. The Virtual Image contains approximately
10,000 objects. The proposed book would contain the formal specifica-
tions for the implementation of the Virtual Machine, as well as a de-
scription of the language and the interfaces to the objects in the Virtual
Image. The proposed tape would contain a digital representation of the
Virtual Image that could be loaded into a hardware system on which
the Virtual Machine had been implemented.

All systems running the Smalltalk-80 system would therefore look
the same; each would have to support bitmapped graphics and a point-
ing device for controlling a cursor on the graphics display. The issue of
protecting the software was resolved by copyrighting the Virtual Image
and publicly disclosing the Virtual Machine; licensing under copyright
grants the licensee the right to reproduce the Image only for incorpora-
tion into a hardware product of the licensee. Any unincorporated repro-
duction and distribution is prohibited. The modular approach to the
Smalltalk design made this form of protection feasible.

5
Introduction

An initial attempt to produce a book about the Smalltalk system de-
scribed the design of an unfinished system that was to be called
Smalltalk-80. Chapters of the book were written in the spring and sum-
mer of 1979. Since much of this written material described how to im-
plement the system, an appropriate review of the material required
following the specifications and actually implementing the Virtual Ma-
chine. This was accomplished by involving members of software groups
of several computer manufacturers in the process of review and imple-
mentation. Although the Smalltalk systems had received a great deal of
publicity since Smalltalk-72 was first designed, few people outside Xe-
rox’s research centers had actually used them before this review.

The cautious invitation issued to six companies was to read the book
material in order to understand the nature of the system. Reviewers
were also invited to visit the Xerox Palo Alto Research Center in order
to see a live demonstration of the system. If they were still interested in
the system after reading the written material and participating in a
demonstration, they were invited to enter the second phase of review -
an actual implementation. A company could only accept the invitation
if it had (1) the required hardware (at least a 16-bit processor, a
bitmapped display, and a way of indicating locations on the display),
and (2) a software team on the project that consisted of regular employ-
ees only.

Only four of those invited were able to enter the second phase of the
review, Apple Computer, Digital Equipment Corporation, Hewlett-
Packard, and Tektronix. These four companies agreed to share in
debugging the formal specification of the Virtual Machine. Problems
encountered and general design advice would be exchanged with all
participants. Besides assisting in completing a book about the system,
this review process would test the ability of these manufacturers to suc-
cessfully create a full implementation of the Smalltalk-80 system based
on the information provided in the book. Success would be measured by
each manufacturer’s ability to “read and adopt” the Virtual Image; a
more subjective measurement would be the actual performance of the
system on each manufacturer’s hardware.

By 1982, the review process was complete enough that a revision of
the book was possible. Actually, the written material was treated much
the way the Smalltalk software had been treated over the decade of re-
search—it was thrown away, with the exception of the (now debugged)
formal specification of the Virtual Machine. All of the chapters were
rewritten. Because of the volume of material that was to be disseminat-
ed, the book became three books—one for the programmer and lan-
guage designer (Smalltalk-80: The Language and Its Implementation),
one for the wuser and programming environments designer
(Smalltalk-80: The Interactive Programming Environment), and one for

6

The Smalltalk-80 System Release Process

the applications designer (Smalltalk-80: Creating a User Interface and
Graphical Applications).

For their participation in the review process, each manufacturer re-
ceived a right to use the Smalltalk-80 Virtual Image in their research
and in their developed hardware products. Thus the Virtual Machine
has been provided outside Xerox without obligation, while the Virtual
Image for use in conjunction with the Machine has been licensed under
the auspices of copyright. That is, the reproduction and redistribution of
the Virtual Image or portions of the Virtual Image are permitted only
as incorporated into a product of these manufacturers/licensees.

The Review
Process

The first tape containing a Virtual Image was delivered February 17,
1981. The image file contained 328 records, 512 bytes per record. The
purpose of this tape was to debug the image file format, and to get the
reviewers started loading in and running a version of Smalltalk. The
image had two deficiencies: the source code for the class hierarchy was
primarily a subset of the system, and the primitives called from each
class had only preliminary class/method and number assignments. The
reviewers were also provided a detailed memo instructing them how to
read the image file format and summarizing the information provided
in the book on formats for object pointers, object space, contexts, com-
piled methods, and classes.

As part of the agreement, telephone consultation was available to the
implementors. Any major bugs or discrepancies in the specifications
were reported via telephone and logged. It was possible to monitor each
implementor’s progress with respect to their discovery of or compensa-
tion for the bugs. The process of revising the system image itself was
carried out at Xerox with the aid of electronic mail: bug reports, bug
fixes, status reports, and new ideas were typically communicated
electronically. Eventually these communications evolved into a
Smalltalk-80 subsystem called the Version Manager which supported
(re-)configuration of new system releases.

The second tape was delivered on July 24, 1981. In addition to the
image file (this time 589 records long), the tape contained a file of the
source code, a file into which the system writes its “audit trail” of
changes, and three files containing traces generated by the
Smalltalk-80 simulator as it executes the first bytecodes in the Virtual
Image. The traces were made by running the formal specification of the
interpreter written in Smalltalk-80 code (the code is included in the
chapters of the book).

7
The Review Process

The three traces, provided in all subsequent tape releases, show de-
creasing levels of detail over increasing durations.

1. The first trace shows all memory references, allocations,
bytecodes, message transmissions, returns, and primitive invoca-
tions for the first 115 bytecodes executed.

2. The second trace shows only the bytecodes, message transmissions,
returns, and primitives for the first 409 bytecodes.

3. The third trace shows message transmissions, primitives, and re-
turns for the first 1981 bytecodes.

The traces allow the implementors to compare their system’s actual be-
havior with the “expected” behavior.

This second tape contained a full system according to the specifica-
tion of the Smalltalk-80 Virtual Machine. All the source code had ei-
ther been rewritten according to the class hierarchy for Smalltalk-80,
or had been translated from the Smalltalk-76 classes into the
Smalltalk-80 syntax. However, this translated code was not the defini-
tion for the final system.

The third tape was delivered four months later on November 18,
1981. It contained the same kinds of files as were provided on the sec-
ond tape. By this time, however, the system user interface had been
completely rewritten and a great deal of new functionality had been
provided in the program development environment. The image file was
now 977 records long.

Once again, the Virtual Machine had been changed, in particular,
several primitives were added. This time the changes were mostly those
discussed and agreed upon by the implementors who attended the
“First Ever Smalltalk-80 Implementors’ Conference” held September
24-25, 1981, in Palo Alto. Much of the discussion at this conference cen-
tered around the uses of reference counting, garbage collecting, and
method caches. The Smalltalk-80 system design separates storage man-
agement from the Virtual Machine specification. The various
implementors were able to try out several storage management
schemes, as well as several different approaches to reference counting.
Source code management was also discussed, notably the solution of
making source code bona fide Smalltalk objects in a virtual memory
system, rather than trying to use external text files. Benchmarks for
comparing system implementations were specified, and agreement was
reached on writing a book on implementation considerations (that is,
the book in which this chapter appears).

A fourth tape was later provided in order to distribute a Virtual Im-
age that had been used for some time and in which many bugs had
been fixed and some new features added. In particular, the fourth im-

8

The Smalltalk-80 System Release Process

age added a model interface to a file system. The image file was now
1011 records long. The implementors who had been successful in run-
ning the third tape were able simply to load and run this fourth tape,
without any changes to their Virtual Machine implementation. The
goal of distributing system releases as Virtual Images was thus reached
and the review process terminated.

Additional
Collaborations

Prior to the delivery of the third image, an additional research license
was given to the University of California at Berkeley in order to pro-
vide material for study by a graduate seminar on computer architecture
(taught by Professors David Patterson, John Ousterhout, and Richard
Fateman). The students in the seminar obtained an early version of the
Hewlett-Packard implementation of the Smalltalk-80 Virtual Machine
on which to run the Virtual Image provided by Xerox. After some ini-
tial use and study, the students wrote their own implementation in the
C language for a VAX/780. The purpose in executing this license was to
establish a close collaboration with a group of researchers experienced
with the application of state-of-the-art hardware architecture technolo-
gy to high-level programming languages.

Once the review process was completed, a special collaboration was
formulated with the Fairchild Laboratory for Artificial Intelligence Re-
search (FLAIR). Several implementations had been carried out on hard-
ware systems consisting of an MC68000 processor, from which several
clever ideas for improving the performance of the interpreter had been
devised. The researchers at Xerox and FLAIR felt that by working to-
gether they could combine these clever ideas into a MC68000-based sys-
tem with better performance than so far demonstrated. At the time
that this chapter was written, this implementation project was still un-
der way.

A Final Word

The book review process, as envisioned by the research team, satisfied
two needs: publication of research results, and setting a standard for a
new form of personal computing. Publication took the form of written
articles; the quantity of material and the integrated presentation of
that material required a full book and a special issue of a magazine.
The published system, however, was best appreciated in its dynamic
form; publication was best served by distribution of the actual system
software. Through this distribution, a shared system base has been cre-
ated.

The Evolution
of the Smalltalk
Virtual Machine

Daniel H. H. Ingalls
Software Concepts Group
Xerox Palo Alto Research Center

Palo Alto, California

Introduction In this paper we record some history from which the current design of
the Smalltalk-80 Virtual Machine springs. Our work over the past de-
cade follows a two- to four-year cycle that can be seen to parallel the
scientific method and is shown in Fig. 2.1. The paper appears in two

Use

Observe whether the
prediction worked

Applications

Implement Design

Make a prediction Formulate a theory

based on theory based on
experience

Language

Figure 2.1
Copyright © Xerox Corporation 1982. All rights reserved.

10

The Evolution of the Smalltalk Virtual Machine

sections that are relatively independent of one another. The first sec-
tion traces the evolution of the current design from the perspective of
form following function. It follows the major implementation challenges
and our solutions to them. The second section relates some of the meth-
odology which evolved in pursuing this cycle of reincarnation. Readers
who are less interested in the details of Smalltalk can skip to the sec-
ond section and interpret our experience relative to other programming
languages and systems.

Form Follows
Function

Smalltalk-72

From the first Smalltalk interpreter to the definition of the
Smalltalk-80 Virtual Machine, the Smalltalk language has been charac-
terized by three principal attributes:

¢ Data stored as objects which are automatically deallocated,
¢ Processing effected by sending messages to objects,

¢ Behavior of objects described in classes.

In spite of other opinions to the contrary, we consider these to be the
hallmarks of the “object-oriented” style of computing. In this section we
shall trace the evolution of the underlying machinery which has sup-
ported language systems in this style over the last ten years. Some of
the changes have augmented the power of the language, and some have
increased its efficiency. Each change can be seen as an attempt to bring
the underlying machinery more into harmony with the day-to-day de-
mands of object-oriented programming.

The very first Smalltalk evaluator was a thousand-line BASIC program
which first evaluated 3+4 in October 1972. It was followed in two
months by a Nova assembly code implementation which became known
as the Smalltalk-72 system!.

[] Storage Management Objects were allocated from a linked list of
free storage using a first-fit strategy. Objects which were no longer ac-
cessible were detected by reference-counting. They were then returned
to the free storage list, with adjacent entries being automatically co-
alesced. Since pointers were direct memory addresses, compaction
would have been complicated, and was not attempted. Contexts, the
suspended stack frames, were managed specially as a stack growing
down from high memory while normal allocation grew up from low
memory. This separation reduced the tendency to leave “sandbars”

Figure 2.2

1

Form Follows Function

when returning values from deep calls, a problem in the absence of
compaction.

[[] Token Representation of Code All code was stored in a single tree
made up of instances of Array (it was called Vector then), a variable-
length array of pointers. The code in this tree represented a pattern de-
scription, similar to Meta. Fig. 2.2 presents the Smalltalk-72 definition
of a class of dotted-pair objects, followed by a few examples of its use.
Responses printed by the system are underlined.

to pair to is the defining word, as in LOGO.
| head tail | declares instance variable names.

(isnew = isnew is true if an instance is just created.
(" head « ;. "tail «) " means literally the next token, here the
4 head = names head and tail.
(4 « = ~ is a message like any other.
(" head <) : fetches the next value from the incoming.
t head) message stream.
£ tail = 4 matches the next literal token
(£ « = like the Smalltalk-80 message
(" tail «) peekFor:
1 tail) false = (body) does nothing, but
“ print = true = (body) evaluates the body, and

(" [print. head print.

then leaves the outer scope.

. print. In this way several such constructs
tail print.] print)) work as a CASE statement.
pair
“a«— par2h Here a pair is created, called a.
[2.5]
a tail — pair37 a gets its tail changed.
[2.3.7]]
b tail head a’s tail (=[3.7]) gets the message head.
3

The code was viewed by the interpreter as simply a stream of tokens.
The first one encountered was looked up in the dynamic context, to de-
termine the receiver of the subsequent message. The name lookup be-
gan with the class dictionary of the current activation. Failing there, it
moved to the sender of that activation and so on up the sender chain.
When a binding was finally found for the token, its value became the
receiver of a new message, and the interpreter activated the code for
that object’s class.

12
The Evolution of the Smalltalk Virtual Machine

In the new context, the interpreter would begin executing the receiv-
er’s code, matching it with the token stream which followed the original
occurrence of the receiver. Various matching operators would select a
route through the code which corresponded to the message pattern en-
countered. The matching vocabulary included matching a literal token,
skipping a token, picking up a token literally, and picking up the value
of a token. The latter operation invoked the same dynamic lookup de-
scribed above for the receiver.

[[] Classes Most class properties were stored in a single dictionary. In-
stance variable names were denoted by a special code which included
their offset in the instance. Class variables appeared in the same dictio-
nary as normal name/value pairs. Another entry gave the size of in-
stances, and another gave the “code” for the class. When a class was
mentioned in code, it would automatically produce a new instance as a
value. The unfortunate result of this special behavior was to make clas- Smal
ses unable to be treated as ordinary objects.

[] Applications Smalltalk-72 was ported to the Alto? as soon as the
first machines were built, and it provided a stable environment for ex-
perimentation over the next few years. The Alto provided a large
bitmap display and a pointing device, and thus made an ideal vehicle
for working with graphical user interfaces.

Development of the Smalltalk-72 system began with Textframes and
Turtles. Textframes provided text display with independent composition
and clipping rectangles; Turtles gave us line drawing capability, mod-
eled after Papert’s experiments with turtle geometry®. In both cases,
Smalltalk’s ability to describe multiple instances added considerable le-
verage to these primitive capabilities. Soon many interesting and useful
applications were written, including a mouse-driven program editor, a
structured graphics editor, an animation system and a music system.
Finally, Smalltalk-72 served as the basis for an experimental curricu-
lum in object-oriented computing for high-school children*.

[} Shortcomings The Smalltalk-72 system was used heavily by a
dozen people for four years. The many practical applications gave us a
lot of experience with the power of classes and the message-sending
metaphor. In the course of this work, we also became increasingly
aware of many limitations in the Smalltalk-72 system.

Dynamic lookup of tokens was both inefficient and unmodular. The
dynamic lookup tempted some programmers to write functions which
“knew” about their enclosing context. This code would then cause sub-
tle errors when apparently innocent changes were made in the outer
level.

ltalk-74

13

Form Follows Function

The message stream model was complicated and inefficient. One
could not tell what a given piece of code meant in isolation. This be-
came a problem as we attempted to build larger systems in which mod-
ularity was more of an issue. Also, a considerable amount of time was
wasted on execution-time parsing (determining whether the result of a
receiver expression should gobble the next token in the execution
stream).

As mentioned above, classes were not first-class objects. Also, as our
experience increased, we came to realize the need for inheritance. This
was felt first in the commonality of behavior of Arrays, Strings, and
sub-Arrays. For the time being, we referred to common functions from
these similar classes so as to factor the behavior, but it was clear that
some sort of inheritance mechanism was needed.

In 1974 we produced a major redesign of the Smalltalk interpreter with
the aim of cleaning up its semantics and improving its performance.
While the redesign was a mixed success, Smalltalk-74 was the site of
several advances which fed into the later systems.

[] Message Stream Formalism We succeeded in formalizing the oper-
ation of the interpreter, a step in the direction of simplicity and gener-
ality. For instance, we were able to provide a programmer-accessible
object which represented the incoming message stream. Thus, not only
could all the message stream operations be examined in Smalltalk, but
the user could also define his own extensions to the message stream se-
mantics. While this was a local success, it did not solve either of the
real problems: token interpretation overhead, and non-modularity of re-
ceiver-dependent message parsing.

[] Message Dictionaries Classes were given a message dictionary to
allow primary message matching to be done by hashing. This did not do
much for execution speed, since the previous interpreter had tight code
for its linear scan, but it did help compilation a great deal since a single
message could be recompiled without having to recompile all the code
for the class. Unfortunately classes were still not able to be treated as
normal objects.

[] BitBlt Smalltalk-74 was the first Smalltalk to use BitBIt as its
main operation for bitmap graphics. The specification for BitBit arose
out of earlier experience with Turile graphics, text display, and other
screen operations such as scrolling and menu overlays. Our specifica-
tion of BitBIt has been used by others under the name RasterOp®. While
the general operation was available to the Smalltalk programmer,
much of the system graphics were still done in machine-coded primi-
tives, owing to inadequate performance of the token interpreter.

14

The Evolution of the Smalltalk Virtual Machine

Smalltalk-76

Experience with
Smalltalk-76

(] OOZE Smalltalk-74 was the system in which the OOZE (“Object-
Oriented Zoned Environment”) virtual memory was first implemented.
OOZE provided uniform access to 65K objects, or roughly a million
words of data. Smalltalk-74 served as the development environment for
OOZE, so that when Smalltalk-76 was designed, OOZE was debugged
and ready for use.

] Applications 1In addition to the previous applications which we had
developed, Smalltalk-74 served as host to an information retrieval sys-
tem and complete window-oriented display interface. Owing to the vir-
tual memory support, it was possible to integrate many functions in a
convenient and uniform user interface.

In 1976 we carried out a major redesign of the Smalltalk language and
implementation’. It addressed most of the problems encountered in the
previous four years of experience with Smalltalk:

» Classes and contexts became real objects;
e A class hierarchy provided inheritance;
« A simple yet flexible syntax for messages was introduced;

* The syntax eliminated message stream side-effects and could be
compiled;

¢ A compact and efficient byte-encoded instruction set was intro-
duced;

¢ A microcode emulator for this instruction set ran 4 to 100 times
faster than previous Smalltalks; and

+ OOZE provided storage for 65K objects—roughly the capacity of
the Alto hardware.

The design for this system was completed in November of 1976 and sev-
en months later the system was working. This included a full rewrite of
all the system class definitions.

The Smalltalk-76 design stood the test of time well. It was used for four
years by 20 people daily and 100 people occasionally. A large portion of
the design survives unchanged in the Smalltalk-80 system. However,
the Smalltalk-76 design did have some snags which we encountered
during our four-year experience.

[] Block Contexts Smalltalk-76 had to provide a mechanism for pass-
ing unevaluated code which was compatible with a compiled represen-
tation. A syntax was devised which used open-colon keywords for

15

Form Follows Function

passing unevaluated expressions (the semantics were the same as the
square bracket construct in the Smalltalk-80 language). This approach
was supported by block contexts which allowed executing code remote-
ly. Since the Smalltalk-76 design had no experience to draw from, it
was weak in several areas.

One problem which was discovered in the process of supporting error
recovery was that block contexts could not be restarted because they
did not include their initial PC as part of their state. This was not nor-
mally needed for looping, since all such code fragments ended with a
branch back to the beginning. Happily, we were able to fix this by de-
fining a new subclass.

Two other problems were discovered with remote contexts when
users began to store them as local procedures. For one thing, there was
no check in the interpreter to recover gracefully if such a piece of code
executed a return to sender after the originating context had already
returned. Also, the system could crash if remote contexts were made to
call one another recursively, since they depended on their home context
for stack space, rather than having their own stack space.

There were two other weaknesses with remote code. There was an
assymmetry due to use of open-colon keywords. For example one would
write

newCursor showWhile: [someExpression]

to cause a different cursor to appear during execution of
someExpression. But if the code contained a variable, action, which was
already bound to remote code, one wanted that variable to be passed di-
rectly, as with a closed-colon keyword. The only way to handle this
without needing a pair of messages with and without evaluation was to
write

newCursor showWhile: [action eval].

This would do the right thing, but caused an extra remote evaluation
for every level at which this strategy was exercised. Besides being cost-
ly, it was just plain ugly.

Another weakness of remote contexts was that, while they acted
much like nullary functions, there was no way to extend the family to
functions which took arguments.

Finally, there was a question about variable scoping within remote
code blocks. Smalltalk-76 had no scoping, whereas most other languages
with blocks did.

All of these problems with RemoteContexts were addressed one way
or another in the Smalltalk-80 design.

16

The Evolution of the Smalltalk Virtual Machine

Experience with

OOZE

(] Compilation Order The Smalltalk-76 interpreter assumed that the
receiver of a message would be on the top of the execution stack, with
arguments below it. The number of arguments was not specified in the
“send” instruction, but was determined from the method header after
message lookup. From the designer’s perspective this seemed natural;
the only other reasonable choice would be for the receiver to lie under-
neath the arguments, as in the Smalltalk-80 system. In this case it
seemed necessary to determine the number of arguments from the se-
lector in order to find the receiver in the stack, and this looked both
complex and costly to do at run time. There were two problems with
having the receiver on the top of the stack. First the compiler had to
save the code for the receiver while it put out the code for the argu-
ments. This was no problem for three of the compilers which we built,
but one particularly simple compiler design foundered on this detail.
The second problem with post-evaluation of receivers was that the or-
der of evaluation differed from the order of appearance in the code. Al-
though one should not write Smalltalk code which depends on such
ordering, it did happen occasionally, and programmers were confused
by the Smalltalk-76 evaluation scheme.

("] Instruction Set Limitations The Smalltalk-76 instruction set was
originally limited to accessing 16 instance variables, 32 temps, and 48
literals. These limits were both a strain on applications and on the in-
struction set. A year later we added extended instructions which re-
lieved these limits. This was important for applications, and it also took
pressure off the future of the instruction set. With extended codes avail-
able, we had the flexibility to change the instruction set to better re-
flect measured usage patterns. For example we found that we could get
rid of the (non-extended) instructions which accessed literals 33-48, be-
cause their usage was so low. Such measurements led us eventually to
the present Smalltalk-80 instruction set.

[] Address Encoding In OOZE, object pointers encoded class informa-
tion in the high 9 bits of each pointer. This had the benefit of saving
one word per object which would have been needed to point to the class
of the object. In fact, it actually saved two words on many objects be-
cause classes contained the length of their instances. Variable length
objects had separate class-parts for common lengths (0 through 8). How-
ever, the address encoding had several weaknesses. It squandered 128
pointers on each class, even though some never had more than a couple
of instances. It also set a limit on the number of classes in the system
(512). This did not turn out to be a problem, although an earlier limit of
128 did have to be changed. Finally, owing to the encoding, it was not
possible to use object pointers as semantic indirection. For this reason,
Smalltalk-76 could not support become: (mutation of objects through
pointer indirection) as in later Smalltalks.

Efficiency and
Portability:
Smalltalk-78

17
Form Follows Function

[] Capacity While the OOZE limitation of 65K objects is small by to-
day’s standards, it served well on the Alto. The Alto has a 2.5 megabyte
disk, and with a mean object size of 16 words, OOZE was well matched
to this device.

[] Interpreter Overhead OOZE had a couple of weaknesses in the area
of performance, which only became significant after our appetites had
increased from several years’ experience. One was that the object table
required at least one hash probe for every object access, even just to
touch a reference count. Another was a design flaw in the management
of free storage which required going to the disk to create a new tempo-
rary object if its pointer had been previously placed on a free list. We
designed a solution to both of these problems. Temporary objects would
be treated specially with pointers which were direct indexes into their
object table. Freelists would only be consulted when an object “ma-
tured” and needed a permanent pointer assigned. Because temporary
objects account for many accesses, much of the overhead of probing the
permanent object table would be eliminated. Since Smalltalk-76’s days
seemed numbered, we did not take the time to implement this solution.

In 1977 we began a project to build a portable computer capable of run-
ning the Smalltalk system. Known internally as NoteTaker, it began as
a hand-held device for taking notes, but ended up as a suitcase-sized
Smalltalk machine. Several factors converged to define this project. We
wanted to be able to bring Smalltalk to conferences and meetings to
break through the abstractions of verbal presentations. With the Intel
8086 and other 16-bit microprocessors (the Z8000 and MC68000 were
coming, but not available yet), we felt that enough computing power
would be available to support Smalltalk, even without microcode. Final-
ly, portability seemed to be an essential ingredient for exploring the
full potential of personal computing.

The design challenge was significant. We were moving to an environ-
ment with less processing power, and the whole system had to fit in 1/4
Mbyte, since there was no swapping medium. Also we faced transport-
ing 32K bytes of machine code which made up the Smalltalk-76 system,
and it seemed a shame not to learn something in the process. The re-
sult of these forces was the design of Smalltalk-78.

[] Cioned Implementation The Smalltalk-78 implementation was sig-
nificant in that it was not built from scratch. We were happy enough
with the basic model that we transported the entire Smalltalk level of
the system from Smalltalk-76. In order to do this, we used the system
tracer (see p. 24) which could write a clone of the entire system onto an
image file. This file could then be loaded and executed by the
Smalltalk-78 interpreter. The tracer had provisions in it for transmut-

18

The Evolution of the Smalltalk Virtual Machine

Figure 2.3

ing object formats as necessary, and even for changing the instruction
set used in the methods.

[[] Indexed OT The Smalltalk-78 design centered around an indexed
object table, which is the same design as in the Smalltalk-80 system.
This greatly simplified object access and yet retained the indirection
which made for easy storage management in Smalltalk-76. Reference
counts were stored as one byte of the 4-byte table entry. Given an ob-
ject pointer in a register, a reference count could be incremented or
decremented with a single add-byte instruction with an overflow check.

[] Small Integers Since there would not be room in core for more
than 10K objects or so, it was possible to encode small integers (-16384
to 16383) in part of the pointer space. Since object table indices would
all be even (on the 8086, they were multiples of 4), we encoded small in-
tegers as two’s complement integers in the high-order 15 bits, with the
low-order bit turned on. With this design, allocation of integer results
was trivial, integer literals could be stored efficiently, and integer val-
ues did not need to be reference counted.

(] In-line Contexts In order to save time allocating new contexts, and
to take advantage of the stack-oriented instructions available in most
microprocessors, the representation of contexts was redesigned. Instead
of having a separate object for each context, a large object was allocated
for each process, in which contexts could be represented as conventional

19
Form Follows Function

stack frames. This special representation complicated the handling of
blocks and the debugger, requiring an interface which referred to the
process and an offset within the process.

In addition to reduced allocation time, the time to transfer argu-
ments was eliminated by allowing the contexts to overlap; the top of
one context’s stack (receiver and arguments) was the base of the next
context’s frame.

(] Reduced Kernel— The Leverage of BitBlt We have always sought
to reduce the size of the Smalltalk kernel. This is not only an aesthetic
desideratum; kernel code is inaccessible to the normal user, and we
have always tried to minimize the parts of our system which can not be
examined and altered by the curious user. In this particular case, we
were also moving to a new machine. While writing a certain amount of
machine code seemed inevitable, we did not relish the idea of transcrib-
ing all 32K bytes of code which comprised the Smalltalk-76 kernel. For-
tunately, much of that bulk consisted of various routines to compose
and display text, to draw lines and implement Turtle geometry, and to
provide various interfaces to bitmap graphics such as moving rectan-
gles, and copying bits to buffers as for restoring the background under
menus.

The definition of BitBlt grew out of our experience with text, lines
and other bitmap graphics. Now the constraints of the NoteTaker im-
plementation provided the motivation to implement all these capabili-
ties in Smalltalk, leaving only the one primitive BitBIt operation in the
kernel. This was a great success in reducing the size of the kernel. The
full NoteTaker kernel consisted of around 6K bytes of 8086 code. This
figure did not include Ethernet support, real-time clock, nor any signifi-
cant support for process scheduling.

[] Performance The performance of the NoteTaker was interesting to
compare with the Alto. The Smalltalk instruction rate improved by a
factor of two, and yet the display of text was much slower (being in
Smalltalk, rather than machine code). By adding a small primitive for
the inner loop of text display and line drawing, this decrease was large-
ly compensated. User response for such actions as compiling was signifi-
cantly improved, owing to the faster execution and to the freedom from
the swapping delays of OOZE.

[] Mutability Smalltalk-78 used no encoding of object pointers other
than for small integers. Class pointers and length fields (for variable-
length objects) were stored just as any other fields. It was therefore pos-
sible in this design to allow mutation of objects, and this was made
available as the primitive method for become:.

20

The Evolution of the Smalltalk Virtual Machine

TinyTalk

Smalltalk-80

[] Relevance We learned a great deal from the NoteTaker challenge,
even though only 10 prototypes were built. We made the system much
more portable, and had demonstrated that the new generation of
microprocessors could indeed support Smalltalk. The decision not to
continue the project added motivation to release Smalltalk widely.

At the same time as the NoteTaker implementation, we performed an
experiment? to see if a very simple implementation could run on a con-
ventional microprocessor such as a Z80 or 6502. This implementation
used marking garbage collection instead of reference-counting, and was
able to use simple push and pop operations on the stack as a result. A
method cache largely eliminated the overhead in message lookup and,
since primitive codes were included in the cache, access to primitives
was fast. The system did actually fit in 64K bytes with a little bit of
room to spare. Another experiment which was done in conjunction with
this implementation was to demonstrate that a special case of BitBlt for
characters could run much faster than the general version.

With Smalltalk-78 behind us, few changes were made to the Virtual
Machine to produce the Smalltalk-80 Virtual Machine. The main
change was an increase in power from allowing blocks with arguments.
Beyond this, mostly we cleaned up many details, some of which sup-
ported more extensive cleanups in the Smalltalk level of the system.

[] Contexts Again We felt that the optimized contexts of
Smalltalk-78 did not justify the loss in clarity which they entailed. So
in the Smalltalk-80 language we reverted to Contexts as objects, leaving
such optimizations up to implementors clever enough to hide their
tricks entirely from Smalltalk. In order to simplify the management of
Contexts in the Virtual Machine, we decided to use two sizes of contexts
instead of making them truly variable-length. This meant that, if sepa-
rate free lists were managed for these two lengths, storage for contexts
could be allocated and freed with relatively little fragmentation and co-
alescence overhead.

[} Blocks with Arguments While the syntax changed little in the
Smalltalk-80 language (open colon and other non-ASCII selectors were
banished), our extended discussions of syntax led to the current descrip-
tion for blocks with arguments. In fact, this required no change to the
Virtual Machine, but it had the feel of such a change in the language.

[] BlockContexts We re-engineered BlockContexts in the Small-
talk-80 language. Smalltalk-78 had already handled their recursive ap-
plication by providing independent stack space for each invocation. Be-
yond this, mechanisms were defined for checking and diagnosing such
anomalous conditions as returning to a context which has already re-
turned.

Future Directions

21

Form Follows Function

[] Compilation Order Smalltalk-78 had perpetuated the post-evalua-
tion of receiver expressions so as to avoid delving into the stack to find
the receiver. In the Smalltalk-80 language, however, we encoded the
number of arguments in the send instruction. This enabled strictly left-
to-right evaluation, and no one has since complained about surprising
order of evaluation. We suspect that this change will yield further fruit
in the future when someone tries to build a very simple compiler.

[7] Instruction Set In addition to revamping the send instructions, we
made several other improvements to the instruction set. We completed
the branch instructions by adding branch-if-true. We put in 2- and
3-byte extensions to retain reasonable compactness without restricting
functionality. We also added a few compact codes for returning true
and false, and for pop-and-store into temps and fields of the receiver.

[[] Methods The encoding of method headers followed the earlier
Smalltalk-78 design. In order to simplify the allocation of contexts, a bit
was included to indicate whether a large frame was necessary to run
the method or not.

While the present Smalltalk design has evolved over a decade now, that
does not mean it is finished. As when one climbs a large mountain, the
higher reaches are gradually revealed and it seems there is as much to
do now as when we started.

[] Virtual Memory An obvious shortcoming of the Smalltalk-80 speci-
fication is that it does not include a virtual memory. There are several
reasons for this. Our experience with OOZE suggested that object-ori-
ented approaches might be significantly better than simple paging, and
we did not want to commit ourselves to one or the other. From our ex-
perience with porting the system from one interpreter to another, it
was clear to us that implementors could experiment with the virtual
memory issue fairly easily, while still working from the Smalltalk-80
image specification. The current object formats allow a simple resident
implementation, and yet lend themselves to extension in most of the ob-
vious directions for virtual memory.

[] Reducing Concepts It is always useful to reduce the number of
concepts in a language when possible. Smalltalk distinguishes many
levels of refinement: subclassing, instantiation, blocks and contexts, to
name a few. It is likely that some of these distinctions can be dissolved,
and that a cleaner virtual machine design would result.

[] Typing and Protocols While the Smalltalk-80 language is not a
typed language in the normal sense, there is nonetheless an implicit no-
tion of variable type in the protocol (full set) of messages which must be

22

The Evolution of the Smalltalk Virtual Machine

understood by a given variable. We have described an experimental sys-
tem based on this notion of type®, and a serious treatment of this ap-
proach would likely involve changes to the Virtual Machine.

[} Multiple Inheritance While the Smalltalk-80 system does not pro-
vide for multiple inheritance, we have described an experimental sys-
tem which supports multiple superclasses using the standard Virtual
Machine'. This is another area in which serious use of the new para-
digm might suggest useful changes to the Virtual Machine.

[] Tiny Implementations While, on one end of the spectrum, we seek
to build vastly larger systems, we should not ignore the role of small
systems. To this end, there is a great deal of room for experimentation
with small systems that provide the essential behavior of the
Smalltalk-80 system. Threaded interpreters offer simplicity and speed,
and it shouldn’t be difficult to capture the essence of message sending
in an efficient manner.

Maintaining
an Evolving
Integrated
System

Applying the
Smalltalk
Philosophy

We have had considerable experience maintaining an evolving integrat-
ed system. In this section we cover several of the challenges and our so-
lutions which support the Smalitalk approach to software engineering.

One way of stating the Smalltalk philosophy is to “choose a small num-
ber of general principles and apply them uniformly.” This approach
has somewhat of a recursive thrust, for it implies that once you’ve built
something, you ought to be using it whenever possible. For instance, the
conventional approach to altering such kernel code as the text editor of
a programming system is to use off-line editing tools and then reload
the system with the new code and try it out. By contrast, Smalltalk’s
incremental compilation and accessibility of kernel code encourages you
to make the change while the system is running, a bit like performing
an appendectomy on yourself.

The recursive approach offers significant advantages, but it also
poses its own special problems. One of the benefits is that system main-
tainers are always using the system, so they are highly motivated to
produce quality. Another benefit is high productivity, deriving from the
elimination of conventional loading and system generation cycles. Con-
sistent with the Smalltalk philosophy as articulated above, things are

Figure 2.4

The Snapshot
Concept

23
Maintaining an Evolving Integrated System

also simpler; the tools and the task are one, so there are fewer versions
to worry about. The complementary side of this characteristic is that if
the only version is compromised, you are “down the creek without a
paddle.”

00pS !
I JusT TYPED

‘PROCESSOR & NIL!

The Alto had a particularly nice characteristic as a personal machine:
being based on a removable disk pack, once you had installed your per-
sonal pack, any machine you used behaved as your personal machine.
When we built the Smalltalk environment, based on an extensible pro-
gramming language, we arranged the system so that when you termi-
nated a working session, or quit, the entire state of your system was
saved as a snapshot on the disk. This meant that as Smalltalk came to
be a stand-alone environment, containing all the capabilities of most
operating systems as well as the personal extensions of its owner, any
Alto instantly took on that specialized power as soon as you inserted
your disk and resumed your working session. The snapshot also served
as a useful checkpoint in case of fatal errors.

In the later virtual memory systems, OOZE automatically saved a
snapshot from time to time, which could subsequently be resumed fol-
lowing catastrophes such as loss of power or fatal programming errors.
The robustness of OOZE in this respect was remarkable, but owing to
the finite latency period of the checkpointing process, it was necessary
to act quickly when fatal errors were recognized, lest they be enshrined
forever in the mausoleum of a snapshot. In such circumstances, the
alert user would quickly reach around to the rear of the keyboard and
press the “boot” button of the Alto before the next automatic snapshot.

24

The Evolution of the Smalltalk Virtual Machine

Minimum Kernel
for Maximum
Flexibility

The Fear of
Standing Alone

Standing Alone
Without Fear: The
System Tracer

Then he could resume his work from a previous state saved a few min-
utes before. This process was known as “booting and resuming.” The
term came to be jokingly applied to other situations in life, such as un-
successful research efforts and other less serious endeavors.

Most systems are built around a kernel of code which cannot easily be
changed. In our Smalltalk systems, the kernel consists of machine code
and microcode necessary to implement a virtual Smalltalk machine.
You clearly want the kernel to be as small as possible, so that you en-
counter barriers to change as infrequently as possible. For example, in
Smalltalk-72 it was a great improvement when the primitive read rou-
tine was supplanted by one written in Smalltalk, since it could then be
easily changed to handle such extensions as floating-point constants.

Speed comes into play here, because if the kernel is not fast enough,
it will not support certain functions being implemented at a higher lev-
el. This was the case for text display in Smalltalk-76. Similarly, gener-
ality is important, for the more general the kernel is, the more kernel-
like functions can be built at a higher level. For example, the one BitBIt
primitive in Smalltalk-80 supports line drawing, text, menus and
freehand graphics.

While Smalltalk-72 and -74 were used as long-lived evolving images,
the systems as released were always generated from scratch, by reading
a set of system definitions into a bootstrap kernel. With the
Smalltalk-76 system, we took a bold step and opted to ignore support
for system generation. The system was built in two parts: a Virtual Ma-
chine was written in microcode and machine code, and a virtual image
was cross-compiled from a simulation done in Smalltalk-74. Although
this paralleled our previous strategy, we knew that we would soon
abandon support for Smalltalk-74, and thus the Smalltalk-76 system
would be truly stand-alone. In other words, if a bit were dropped from
the system image, or if a reference-count error occurred, there would be
no way to recover the state of the system except to backtrack through
whatever earlier versions of the system had been saved. As the system
became more reliable, we went for days and then weeks without start-
ing over, and finally we realized that Smalltalk-76 was on its own. If
this sounds risky to you, think of how we felt!

While the foregoing approach may seem foolhardy, we actually had a
plan: Ted Kaehler said that he would write a Smalltalk program, the
system tracer, which would run inside of Smalltalk and copy the whole
system out to a file while it was running. Considerable attention would
have to be paid to the parts of the system which were changing while
the process ran. Two months after the launch of Smalltalk-76, Ted’s
first system tracer ran and produced a clone without errors. While we

25
Maintaining an Evolving Integrated System

« f /rH I N [<
WED BETTER
Bool” AND Regume!)

Figure 2.5

all breathed a sigh of relief at this point, the full implications only
dawned on us gradually. This truly marked the beginning of an era:
there are many bits in the Smalltalk-80 release of today which are cop-
ies of those bits first cloned in 1977.

The system tracer solved our most immediate problem of ensuring
the integrity of the system. It caught and diagnosed inaccurate refer-
ence counts, of which there were several during the first few months of
Smalltalk-76. Also, although it took four hours to run, it performed the
function of a garbage collector, reclaiming storage tied up in circular
structures, and reclaiming pointers lost to OOZE’s zoning by class. The
essential contribution of the system tracer, however, was to validate our
test-pilot philosophy of living in the system we worked on. From this
point on, we never started from scratch again, but were able to use the
system we knew so well in order to design its follow-ons.

26

The Evolution of the Smalltalk Virtual Machine

Figure 2.6

Spawning and
Mutation

HEUD ENGINE RooM 2
KeeP THE SPEED UP AND
THE PoMpPs RONNING

UUTIC THE SYSTEM TRAER)
15 DoNe |

As time passed we found that the system tracer had even more poten-
tial than we had imagined. For one thing, it offered an answer to the
problem of using a fully integrated system for production applications.
This problem manifests itself in several ways: a fully integrated system
contains many components which are not needed in production, such as
compiler, debugger, and various editing and communications facilities.
Also, at a finer grain, much of the symbolic information which is re-
tained for ease of access may be wasteful, or even objectionable (for se-
curity reasons) in a production release of the system.

The system tracer could be instructed to spawn an application with
all unnecessary information removed. This could be done post facto,
thus freeing application programmers from the integrated/production
dichotomy until the final release of a product. In actual fact, since the
goal of our research is integration, we never pursued the full potential
of the system tracer to drop out such “product” applications. The clos-
est we came was to eliminate unnecessary parts of the system when we
were short of space for certain large projects.

The possibility of using the system tracer to produce mutations be-
came evident soon after its creation, and we took full advantage of this.
For instance, prior to the Smalltalk-80 release, we wanted to convert
from our own private form of floating-point numbers to the standard
IEEE format. In this case, we simply included an appropriate transfor-
mation in the system tracer and wrote out a cloned image which used
the new format. Then we replaced the floating-point routines in the
Virtual Machine and started up the new image. Similar transforma-
tions have been used to change the instruction set of the Virtual Ma-
chine, to change the format of compiled methods, and to change the
encoding of small integers. It was in this manner that Smalltalk-78 and
-80 were built out of Smalltalk-76.

Figure 2.7

The Virtual Image

27
Conclusion

It is hard to say how far one should take this approach. Sometimes a
change is so fundamental that it requires starting again from the
ground up, as we did from Smalltalk-74 to -76. Even in such cases
though, it seems easiest to simulate the new environment in the old,
and then use the simulation to produce the actual new system.

7 \@f
N N
- o
oLp sY8TEM N aEw sysTEM

/8

CCNs

THE. WicE. THING-
ABOUT SMALLTALL 19
THAT THE PAINT
DRIES mbmﬂsn‘f.

When we decided to release the Smalltalk-80 system, the question arose
as to what form it should take. From the discussion above, it should be
clear why we chose the virtual image (a fancier term for snapshot) for-
mat. This was the one way in which we could be sure that the release
would set a standard. Any implementation, if it worked at all, would
look and behave identically, at least in its initial version. At the same
time, we tried to decouple the image format as much as possible from
such implementation-related details as reference counting versus gar-
bage collection, machine word size, and pointer size. At the time of this
writing, implementations exist which vary in all of these parameters. It
should be possible to decouple similarly our choice of bitmap display
representation, but this project was not of immediate interest to us.

Conclusion

The evolution of the Smalltalk system is a story of good and bad de-
signs alike. We have learned much from our experiences. Probably the
greatest factor that keeps us moving forward is that we use the system
all the time, and we keep trying to do new things with it. It is this “liv-

28

The Evolution of the Smalltalk Virtual Machine

ing-with” which drives us to root out failures, to clean up
inconsistencies, and which inspires our occasional innovation.

References

10.

. Goldberg, Adele, and Kay, Alan, Eds., “Smalltalk-72 Instruction

Manual”, Xerox PARC Technical Report SSL-76-6, 1976.

. Thacker, C. P, et al., “Alto: A Personal Computer”, in Computer

Structures: Readings and Examples, 2nd Edition, Eds. Sieworek,
Bell, and Newell, McGraw-Hill, New York, 1981; (also Xerox
PARC CSL-79-11), Aug. 1979.

. Papert, Seymour, Mindstorms, Basic Books, New York, 1980.
. Goldberg, Adele, and Kay, Alan, “Teaching Smalltalk”, Xerox

PARC Technical Report SSL-77-2, June 1977.

. Newman, William, and Sproull, Robert, Principles of Interactive

Computer Graphics, 2nd Edition, McGraw-Hill, New York, 1979.

. Kaehler, Ted, “Virtual Memory for an Object-Oriented Lan-

guage”, Byte, vol. 6, no. 8, Aug. 1981.

. Ingalls, Daniel H. H., “The Smalltalk-76 Programming System:

Design and Implementation”, Conference Record, Fifth Annual
ACM Symposium on Principles of Programming Languages, 1978.

McCall, Kim, “TinyTalk, a Subset of Smalltalk-76 for 64KB
Microcomputers”, Sigsmall Newsletter, Sept. 1980.

Borning, Alan H., and Ingalls, Daniel H. H., “A Type Declaration
and Inference System for Smalltalk”, Ninth Symposium on Princi-
ples of Programming Languages, pp. 133-141, Albuquerque, NM,
1982.

“Multiple Inheri-
tance in Smalltalk-80”, pp. 234-237, Proceedings at the National
Conference on Artificial Intelligence, Pittsburgh, PA, 1982.

The Smalitalk-80 Code
File Format

Glenn Krasner

Software Concepts Group

Xerox Palo Alto Research Center
Palo Alto, California

Introduction

In the Smalltalk-80 system, programmers define classes and methods
incrementally by editing in system browsers. At some point, program-
mers may want to share their class descriptions with others using dif-
ferent Smalltalk-80 systems. Some means of communication is therefore
required. We have chosen to use files as the means of communication,
and call such files code files.

Code files for the Smalltalk-80 system allow the programmer to com-
municate source code (class descriptions or parts of class descriptions)
between one Smalltalk-80 system and another (possibly the same sys-
tem, later in time). The format of such files was devised as a result of a
number of design considerations:

¢ Restrictions on the allowable character set,

* Whether to allow the code to be “readable” when printed on con-
ventional printers,

¢« Whether to retain/allow more than one emphasis of the text (font
and face changes),

¢« Whether to include source code in the system image (core) or to
place it on external files,

Copyright © Xerox Corporation 1982. All rights reserved.
29

30

The Smalltalk-80 Code File Format

* Whether to allow for executable expressions in addition to source
code of methods, and

* Whether to provide for system crash recovery.

The Smalltalk-80 code file format is restricted to contain a common set
of characters (“printing” ASCII characters plus a small number of con-
trol characters). It gives up the ability to have multiple emphases of
text in order to be as good (or as bad) on conventional printers as it
would be on more capable printers (raster laser xerographic printers,
for example). The approach taken keeps source methods on file storage
to minimize the amount of core used, includes intermingling of execut-
able expressions with source code for methods, and provides for some
amount of system recovery.

Background

The Smalltalk-80 system is powerful and comprehensible, in part be-
cause everything in the system is treated in a uniform way, as an ob-
ject. However, at the point where the Smalltalk-80 system meets the
external world, this uniformity cannot be maintained. The external
world does not consist of Smalltalk-80 objects, but rather of disk files,
network communication, hardware storage devices, and printers. These
define a much more limited structure of information. For example, disk
files typically consist of collections of 8-bit bytes; networks define a lim-
ited set of data that can be communicated; hardware storage devices de-
fine what kinds and, more importantly, how much information can be
handled; and printers typically are restricted to a small number of
characters as the only data they can handle. If the Smalltalk-80 pro-
grammer never had to meet this external world, there would be no
problem. Everything he or she dealt with would be within the
Smalltalk-80 system. For some programmers, this is sufficient. Most
programmers, however, must meet the external world because they
want to share information with some other system. The Smalltalk-80
code file format is a format for representing code objects (i.e., source
code for methods or expressions), especially for communication via the
media of electronic secondary storage and paper.

Constraints
and Goals

The constraints and goals for the design of the format consisted of:

¢ Having a format that would serve as a communications protocol
among Smalltalk-80 systems and from a system to paper. We saw

31
The Code File Format

the paper version as being used by people not fortunate enough to
have display-based browsers and, perhaps more importantly, as
one in which algorithms or pieces of code could be published.

* Having a format that could be printed without translation on con-
ventional printers. We are interested in first having the world
build Smalltalk engines, with bit-map displays and good pointing
devices and lots of computing power. Later, we expect them to want
to use good printers; we are willing to wait before we require them
to do so.

e Having a format that would look satisfactory on paper. Often this
means allowing multiple font and type face information, as well as
formatting information. However, given the first goals, it means
not having extra characters that describe such information clutter-
ing up the printed page.

* Having the source code for the more than 4000 methods in the sys-
tem take up as little main memory as possible. We expect that
reasonable Smalltalk-80 machines will have virtual memories,
where space restrictions would not be a problem. However, the
number of bytes taken up by the source code alone (more than a
million) would preclude most current machines from having any
resident implementation. Therefore the file format was to serve as
a somewhat limited form of virtual memory.

* Having a format that would include executable expressions. Typi-
cally what people want to communicate between systems includes
method definitions, class descriptions, and class initialization ex-
pressions. By providing for executable expressions, all these desires
can be met.

e Minimizing the amount of disk space taken up. For example, one
would not want an entire disk system to become full of text when
only a small percentage of the text is actually needed.

¢ Allowing a certain amount of recovery from system disasters. The
Smalltalk-80 system is one in which it is possible to change almost
anything. This provides great power and flexibility, but has the
danger that a system change could destroy the system itself. It was
desired that code files, since they are somewhat external to the
system itself, could provide recovery from such disasters.

The Code Smalltalk-80 code files are defined as text files that contain only the
File Format “printing” ASCII characters, codes 32 (space) through 127 (DEL), plus
carriage return, line feed, tab and form feed (codes 13, 10, 9 and 12, re-

32

The Smalltalk-80 Code File Format

spectively). The file is broken into chunks, which are sequences of char-
acters terminated by an exclamation point (1), with exclamation points
within a chunk doubled. The meanings of chunks will be described in
the sections to follow.

Exclamation point was chosen for a number of reasons. It is not used
as a Smalltalk-80 selector. It is used in English at the end of sentences,
so it is a reasonable terminator. It tends not to appear in code, so it
rarely has to be doubled. Also, it is thin, so we felt it would not be too
obtrusive on the page.

File Streams

The interface between Smalltalk-80 objects and disk files is encapsulat-
ed by the Smalltalk-80 class FileStream. File Streams support sequen-
tial and random access of disk files through the following protocol

class name FileStream
superclass ExternalStream

opening and closing

openOn: aString
Answer an instance of FileStream representing the disk file named
aString.

close
Close the file.

sequential accessing

next
Answer the character in the file after the current position, and update the
position.

nextPut: aCharacter
Store aCharacter as the character of the file after the current position,
and update the position.

atEnd
Answer true if the current position is at the end of the file, false if it is not.

setToEnd
Set the current position to be the end of the file.

random accessing
position
Answer the current position.
position: aninteger
Set the current position to be aninteger.

Two messages were added to FileStream to deal with chunks, one to
read a chunk from the file, and another to write a chunk onto the file

33
Code Files Used for Source Methods

fileln/Out

nextChunk
Answer a string that is the chunk starting at the current position,
undoubling embedded exclamation points, and excluding the terminator.
nextChunkPut: aString
Write aString as a chunk starting at the current position, doubling embed-
ded exclamation points, and terminating it with an exclamation point.

Code Files
Used for
Source
Methods

The Smalltalk-80 system relies on the code file format to read and
write the source methods of the system. In this way, the files are used
to communicate information from the system to itself at a later point in
time. Each CompiledMethod in the system keeps a short (3-byte)
encoding of the location of its source. This encoding includes which of
four file streams contains the chunk of source code for that method and
the position, within that file, of the first character of its chunk. A glob-
al array called SourceFiles points to the four file streams.

The code for getting the source method in class CompiledMethod
could be*

getSource
| sourceindex sourceFile sourcePosition |
sourceindex « self sourcelndex.
sourceFile — SourceFiles at: sourcelndex.
sourcePosition « self sourcePosition.
sourceFile position: sourcePosition.
tsourceFile nextChunk

Of the four file streams, one, SourceFiles at: 1, is a read-only file
stream of source methods. It is known as the sources file. Periodically
all the source code of the system may be condensed into this file.

The second file stream, SourceFiles at: 2, is a file stream to which ev-
ery change to the system sources is appended. It is known as the chang-
es file. When a method is changed and recompiled, its new source code
is appended to this file (and the encoding bytes of the CompiledMethod
are changed to point at the new source). Periodically, the changes file
may be condensed as well. Since this file grows while a programmer is
working, the changes file may want to be condensed much more often
than the sources file. The third and fourth file streams are currently
unused.

*For implementation efficiency, the code in the Smalltalk-80 system is not actually this,
but provides the same function.

34

The Smalltalk-80 Code File Format

The code in class CompiledMethodto store a new source code string
could be

storeSourceString: aString
| sourceFile sourcePosition |
sourceFile — SourceFiles at; 2.
sourceFile setToEnd.
sourcePosition ~ sourceFile position.
self setSourcelndex: 2

sourcePosition: sourcePosition.

sourceFile nextChunkPut: aString.

Because the changes file is only altered by appending to it, previous
versions can always be found. Periodically, a Smalltalk-80 programmer
will make a snapshot of the state of the system. If the system crashes at
a later time, then, when the system is resumed at the point of snapshot,
the compiled methods in the snapshot of the system will still point to
their place in the files at the time the snapshot was made. The end of
the file will contain changes added between the snapshot and the crash,
and these can be recovered. For example, suppose a programmer
changed the definition of getSource in class CompiledMethod once (ver-
sion A), then made a snapshot, then changed it twice (versions B and
C), and the system crashed because of an error in C. Then the system
can be restarted at the snapshot point, the source and compiled method
for getSource will be version A, but versions B and C will be near the
end of the changes file. The programmer could look at the end of the
changes file, copy version B into the browser for compilation, and ig-
nore C. Then the programmer has recovered to the equivalent of just
before the C change brought down the system.

To improve recovery, the system also records several other things on
the changes file. For example, whenever the user executes an expres-
sion in a code editor, the expression is appended as a chunk on the
changes file. Also, when the user performs a system snapshot, a chunk
consisting of the comment “------ SNAPSHOT-----” is appended to the
changes file, marking the occurrence of a snapshot.

Code Files
Used for
Shared Code

Besides storing the system sources, the code file format serves to com-
municate code and expressions between one system and another. For
this we have added a level of syntax and semantics above the chunk
level. The syntax and semantics are defined and implemented by the
message fileln in class FileStream,

35
Code Files Used for Shared Codes

fileln
| aString sawExclamation |
self position: 0.
[self atEnd]
whileFalse:
[sawExclamation — self peekFor: $!.
aString « self nextChunk.
sawExclamation
ifFalse: [Compiler evaluate: aString]
ifTrue: [(Compiler evaluate: aString) fileInFrom: self]]
peekFor: aCharacter
” Answer true and move past if next = aCharacter”
self next = aCharacter
ifTrue: [truel
ifFalse: [self position: self position - 1. tfalse]

That is, when sent the message fileln, a file stream looks for an excla-
mation point. As long as it does not see one, it reads and has class Com-
piler evaluate the next chunk as a Smalltalk-80 expression. If it did see
an exclamation point, then after the expression is evaluated, it hands
the stream (itself) to the object that was returned as the value of the
expression (see example below).

In particular, the methodsFor: aString message sent to a class will re-
turn an instance of ClassCategoryReader that has its instance variable
myClass set to the class, and its instance variable myCategory set to the
string. The class category reader will respond to the filelnFrom: message
by reading chunks from the file stream. Each chunk is presumed to be
the source for a method, and, for each chunk, the class category reader
has the compiler compile it and install the compiled method in the
proper class and category. This continues until an empty chunk is
found.

filelnFrom: aFileStream
| aString |
[aFileStream atEnd or: [(aString — aFileStream nextChunk) isEmpty]]
whileFalse:
[Compiter compile: aString

forClass: myClass
inCategory: myCategory]

tself

For example, the code for fileln, peekFor: aCharacter, and filelnFrom:
aFileStream would appear in a code file as

36
The Smalltalk-80 Code File Format

IFileStream methodsFor: " filel/O " !
fileln
| aString sawExclamation |
self position: 0.
[self atEnd]
whileFalse:
[sawExclamation — self peekFor: $!!
aString — self nextChunk.
sawExclamation
ifFalse: [Compiler evaluate: aString]
ifTrue: [(Compiler evaluate: aString) fileinFrom: self]}!
peekFor: aCharacter
" Answer true and move past if next = aCharacter”
self next = aCharacter
ifTrue: [Ttruel]
ifFalse: [self position: self position - 1. ffalse]!!

IClassCategoryReader methodsFor: ’ filel/O "!

fileinFrom: aFileStream
| aString |
[aFileStream atEnd or: [(aString — aFileStream nextChunk) isEmpty]]
whileFalse:
[Compiler compile: aString

forClass: myClass
inCategory: myCategory}

1self!!

The class category reader created by the expression FileStream
methodsFor: ’filel/O’ will read and compile the methods for fileln and
peekFor: aCharacter before returning control to the file stream; the
reader created by ClassCategoryReader methodsFor: “filel/O’ will read
in only the method for fileInFrom: aFileStream.

The example shows a number of visual properties that make it easier
to read code format files when they are printed. Each category is
delimited by a short “methodsFor:” line; it is easy to locate the names
of the class and the category for each. Each method is a visual chunk
with all but its first line indented. This of course, depends on the pro-
grammer keeping the convention of including a tab before each line
other than the message pattern. This convention is supported by the
“format” command in the code editor.

In addition to the source code for methods, the code file format and
its interpretation allow any expression to be saved on a file. In particu-
lar, one may save an entire class description from a Smalltalk-80 sys-
tem. That file will consist of an expression defining the class, followed
by an expression setting the global comment of the class, followed by

37
Code File Format for Both Source Methods and Shared Code

the source code for the methods in the class, in the format described
above. When a file stream on such a file, in this or some other system,
is told to filein, it will recreate the entire class description.

Users could also define their own “readers,” objects created with ex-
pressions preceded by an exclamation point, just as
ClassCategoryReaders are created with the “methodsFor:” expressions.
These user-defined readers would be used for creating an object with
special external representation, just as class category readers create
methods whose external representations are strings of characters for-
matted for readability.

Note: In addition to this, since many classes have initialization code
especially for class variables, if the message initialize is defined in the
class, the expression chunk “ <class> initialize!” will appear at the end
of the file containing the class definition. Then, when the file is told to
file in, the initialization code will be executed after the methods are
compiled.

Code File
Format for
Both Source
Methods and
Shared Code

The conventions for shared code given in the previous section are also
followed in the two source code files. That is, the sources file is orga-
nized as a sequence of class descriptions in the above format, arranged
alphabetically by class name, with form feeds between them. The com-
piled methods in the system point to the beginning of their chunks. In
this way, printing out the sources file will give an alphabetical listing of
the system sources with page breaks between each class.

The changes file is a collection of chunks of the form

! <class name > methodsFor: * <categoryName> "!
<source method > !l

The compiled methods in the system that point to the changes file also
only point to the beginning of their chunks. The chunks appended to
the changes file when the user evaluates an expression are in the exe-
cutable form

< expression > !

This means that the sources file could be filed in to redefine the system
classes to their state before changes were made, and the changes file
could be filed in to redefine the changes and re-execute the expressions
made since changes were started. The Smalltalk-80 system provides two
ways of looking at the changes file for recovery, to create a view on a
file whose contents are the last few thousand characters of the changes
file and to create a Changelist browser to view the changes.

38

The Smalltalk-80 Code File Format

Matching the
Goals and
Constraints

The Smalltalk-80 code file format meets most of the goals and satisfies
most of the constraints of its design. It serves as a communications for-
mat between systems. It is used extensively, not only for source code
within a system, but also for exchanging source code between systems.
In addition, because it is restricted to the standard ASCII character set,
it can be printed on conventional printers as well as on more capable
printers.

The code files have a reasonable appearance on paper. Of course, this
is a matter of taste. In a few years we will likely no longer consider its
appearance reasonable because our opinions of “reasonable appearance”
will change. Methods are “chunked” together, and the “methodsFor:”
lines separate categories of methods. Except for the single exclamation
point at the end of each method, there are no characters to distract the
reader. The form feeds between class descriptions also help the read-
ability of the code.

The amount of main memory required to handle sources is quite
small, especially compared with the size of the source code itself. It re-
quires only 3 bytes per compiled method, plus the space taken up by
the interpretation code (outlined in this paper). Compared with over a
million bytes of source code, this is a great savings and considered
worth the added complexity.

The format includes executable expressions. The system currently
uses this feature sparingly-—for class descriptions and initialization,
and for recording expressions evaluated by the user. However, the for-
mat provides a generality that can be exploited in the future.

Disk space efficiency is a compromise in our design. Having one
read-only sources file does help meet this goal since multiple systems
can share this file. At Xerox, we often keep this shared file on a remote
server, where multiple systems can access it and where it does not take
up any local disk space. On the other hand, constantly appending to the
changes file consumes disk space. The Smalltalk-80 development style
often involves defining and redefining methods many times. Since each
definition is appended to the changes file, this causes the file to grow.
However, the user can invoke the system’s ability to compact the
changes file at any time by sending the message compactChanges to
Smalltalk, an instance of SystemDictionary.

Although using the changes file in this way is wasteful of disk stor-
age, there is the advantage that a considerable amount of recovery from
system crashes is possible. By recording all code changes and many oth-
er user events on the changes file, the programmer can recover should
the system go down. In particular, if a programmer is experimenting
with the user interface code and makes a mistake that renders the in-
terface unusable, there will be a trail of the experiments when the sys-
tem is restarted.

39
Other Paths

Other Paths

A couple of other directions in the design of the Smalltalk-80 code file
format that we did not take are worth noting. One direction would have
been to invent a standard representation for the Smalltalk-80 virtual
memory, and insist that everyone’s system use it. The advantages with
this would have been that the source code would fit in the system and
that no special mechanism would be needed to retain system sources.
However, it would not solve the communication problem, nor the recov-
ery problem.

Another idea we discussed was to store only comments and tempo-
rary variable names on the files; the other pieces of text could be gener-
ated by the system, as is currently done by the Decompiler. The benefits
here are that fewer characters of disk space are needed and that code
would appear in a consistent “pretty-printed” way. We decided that the
disadvantages of this approach outweigh its advantages. Although it
saves disk space in terms of the number of characters, there would be
extra space used (either on disk or in main memory) to describe the
mapping between comments and their place in the methods. This map-
ping would also involve a more complex computation. Another major
disadvantage is that the code files would not be human readable. Also,
we did not want to give up the flexibility of storing and displaying the
code in the way it was typed, rather than in the pretty-printer’s format.
Keeping the sources “as is” seemed an easier approach than designing a
more flexible pretty-printer, and even a flexible pretty printer would
not provide that total flexibility.

The Smalltalk-80 system uses only two of the four source file streams
provided; it does not exploit the flexibility that four can provide. One
could imagine ways to use two more files. For example, one of the files
could be used as a read-only version of the condensed changes file, pro-
viding a level of system backup between the sources and changes file.

Another direction that we did not pursue was to allow the text stored
on the files to have multiple emphases (font and face changes) of the
text. The Smalltalk-76 system! had two formats that preserved empha-
ses, and produced listings that were easier to read and that allowed pro-
grammers to tailor the visual aspects of their code to suit their tastes.
Since the Smalltalk-80 principles allow such tailoring in other areas of
the system, tailoring source text ought to be allowed as well. Unfortu-
nately, we were unable to design a file format that allowed both em-
phasis description and direct printing of the file on conventional
printers. Solutions to keeping emphasis descriptions always involved us-
ing non-ASCII characters or had extra characters which would clutter
the page if directly printed. We assume that in the future more printers
will be available that print many fonts and faces. When this is the case
{or to help make this be the case), we hope that some other standard
that preserves emphases will emerge.

40

The Smalltalk-80 Code File Format

Conclusion

The Smalltalk-80 code file format was developed to allow communica-
tion between the flexible world of a Smalltalk-80 system and the less
flexible world of disks, networks, storage devices and printers. It is used
by the system to keep the source code for the methods on disk files,
rather than within the memory of a resident system. It is also used to
communicate changes between one system and another, and to provide
a level of recovery from errors. The format is flexible enough to allow
both code (source methods) and executable Smalltalk-80 expressions to
be read in and/or evaluated; it also includes a general mechanism to al-
low objects in the Smalltalk-80 system to read and interpret the files.
The format satisfies its design constraints and leaves the door open for
several useful extensions.

References

1. Ingalls, Daniel H. H., “The Smalltalk-76 Programming System:
Design and Implementation”, Conference Record, Fifth Annual
ACM Symposium on Principles of Programming Languages, 1978.

Design Decisions for
Smalltalk-80
Implementors

Allen Wirfs-Brock

Tektronix, Inc.
Beaverton, Oregon

Abstract

The Smalltalk-80 virtual machine specification describes the required
behavior of any Smalltalk-80 interpreter. The specification takes the
form of a model implementation of a Smalltalk-80 interpreter. An
implementor of a Smalltalk-80 interpreter is not required to exactly
copy the data structures and algorithms of the model interpreter. The
only requirement is that any Smalltalk-80 interpreter exhibit external
behavior which is identical to that described by the formal specification.
The implementor is free to make design tradeoffs that may increase the
performance of the implementation while preserving the required ex-
ternal behavior. This paper identifies some of the design decisions
which face a Smalltalk-80 implementor and discusses several design
trade-offs.

Introduction

The Smalltalk-80 virtual machine specification as it appears in
Smalltalk-80: The Language and Its Implementation' describes the re-
quired low level behavior of any Smalltalk-80 implementation. The

Copyright © Tektronix, Inc. 1982, All rights reserved.
41

42

Design Decisions for Smalltalk-80 Implementors

specification takes the form of a Smalltalk-80 “program” which exhibits
this behavior. One approach to the implementation of a Smalltalk-80
interpreter is to literally translate this program into some appropriate
implementation language. While this approach will result in an inter-
preter which exhibits the required behavior, the performance of the re-
sulting interpreter may be unsatisfactory.

An alternate implementation approach is to construct an interpreter
that uses algorithms and data structures which differ from those used
in the formal specification. These would be chosen to optimize perfor-
mance for the host implementation environment. Such an interpreter
may achieve higher performance but requires greater implementation
effort.

This paper presents an overview of the design decision space which
confronts the implementors of Smalltalk-80 interpreters. Specifically, it
examines some of the potential design trade-offs concerning the host
hardware and implementation language, the interpreter data struc-
tures, the actual execution of Smalltalk-80 instructions, and the cre-
ation and destruction of objects. Even though the design issues are
examined assuming an interpreter implementation utilizing a conven-
tional computer or microprocessor as a host, many of the trade-offs
should be applicable to a microcoded or hardware implementation.

The Formal
Specification

The first part of the Smalltalk-80 virtual machine specification defines
the virtual machine architecture. This includes the definition of the
primitive data types, the instruction set, and the interface to the cbject
memory manager. The second part describes the internal operation of
the object memory manager. An implementation of the Smalitalk-80
virtual machine is commonly referred to as a Smalltalk-80 interpreter.
The formal specification completely defines the required behavior of a
Smalltalk-80 interpreter.

The formal specification takes the form of a collection of
Smalltalk-80 methods which implement a Smalltalk-80 interpreter. It
is, in effect, an implementation of a “model interpreter.” Within this
model the “registers” of the virtual machine are represented as
Smalltalk-80 instance variables, the data structures are explicitly de-
fined via constant field offsets and bit masks, and the required seman-
tics of the interpreter are implicit in the behavior of the methods. The
model bytecode interpreter implementation can be viewed as the defini-
tion of the correct behavior of a Smalltalk-80 implementation.

Figure 4.1

43
The Formal Specification

The specification does not place any particular requirements upon
the internal implementation of the object memory manager. Of course,
it assumes that any implementation will correctly preserve stored data
and that this data will be available to the interpreter when requested.
The memory manager implementation chapter may also be viewed as a
model for how an object memory manager may be implemented.

An implementor of a Smalltalk-80 interpreter must design and con-
struct an interpreter whose behavior conforms to that defined by the
formal specification. One method of accomplishing this is to directly
translate the Smalltalk-80 methods of the model implementation into
an appropriate implementation language. One might even consider us-
ing a program to perform this translation. Figure 4.1 gives an example
of a method from the formal specification and Figure 4.2 shows how it
might be translated into Pascal.

The principal advantage of the direct translation approach is that it is
a simple method of obtaining a semantically correct interpreter. It also
is a very good way for an implementor to learn how the interpreter
works internally. The principal disadvantage associated with this ap-
proach is that the resulting interpreter may exhibit disappointing per-
formance levels. The data structures and algorithms of the book’s
interpreter were selected to provide a clear definition of the required be-
havior; they will probably not be optimal for any particular host com-
puter. The challenge for a Smalltalk-80 implementor is to design an
interpreter which will yield acceptable performance within some particu-
lar host environment. At Tektronix, we utilized the direct translation
approach (see Chapter 5) and were able to very quickly build a working
(but slow) Smalltalk-80 implementation. Experience gained from this
initial implementation enabled us to later design a significantly im-
proved second generation interpreter.

initializeGuaranteedPointers
" Undefined Object and Booleans ”
nilPointer « 2.
falsePointer — 4.
truePointer « 6.
“and soon.."

pushConstantBytecode
currentBytecode = 113 ifTrue: [Tself push: truePointer].
currentBytecode = 114 ifTrue: ['self push: falsePointer].
currentBytecode = 115 ifTrue: [Tself push: nilPointer].
currentBytecode = 116 ifTrue: [Tself push: minusOnePointer].
currentBytecode = 117 ifTrue: [Tself push: zeroPointer].
currentBytecode = 118 ifTrue: [tself push: onePointer].
currentBytecode = 119 ifTrue: [Tself push: twoPointer].

44

Design Decisions for Smalltalk-80 Implementors

const
{Undefined Object and Booleans}
nilPointer = 2;
falsePointer = 4;
truePointer = 6;
fand so on ...}
procedure pushConstantBytecode;
begin
case currentBytecode of
113: push(truePointer);
114: push(falsePointer);
115: push(nilPointer);
116: push(minusOnePointer);
117: push(zeroPointer);
118: push(onePointer);
119: push(twoPointer);
end {case}

Figure 4.2 end {pushConstantBytecode];
The Host The first major design decision which will confront a Smalltalk-80
Processor implementor will be the choice of the hardware which will host the im-

plementation. In many situations the implementor will have little free-
dom in this area. Where the implementor has the freedom to select the
host processor, there are a number of considerations which should enter
into the decision process.

A processor which is to host a Smalltalk-80 interpreter should be
fast. An interpreter which executes 10,000 bytecodes per second may be
perceived by a Smalltalk-80 programmer to be quite slow. The original
Tektronix implementation, which could execute 3500 bytecodes per sec-
ond, was considered to be just barely usable. The Xerox Dolphin imple-
mentation executes 20,000 bytecodes per second and is considered to
have “adequate” performance, while the Xerox Dorado at 400,000
bytecodes per second has excellent performance (see Chapter 9). At
10,000 bytecodes per second the interpreter will have, on the average,
only 100 microseconds in which to fetch, decode, and execute each
bytecode. At a more acceptable performance level of 100,000 bytecodes
per second, the interpreter will have only 10 microseconds for each
bytecode.

A Smalltalk-80 host processor architecture must support a large
amount of main memory (either real or virtual). The standard
Smalltalk-80 virtual image consists of approximately 500,000 bytes of

45
The Implementation Language

Smalltalk-80 objects. To this must be added the space for interpreter,
the interpreter’s data structures, the display bitmap, and additional
space to contain objects created dynamically as the system runs. The to-
tal requirements of the system will easily approach one million bytes of
memory with even a modest application. Although it may be possible to
configure a virtual image with fewer features and more modest memory
requirements, this can be most easily done utilizing an operational
Smalltalk-80 system. For this reason, the implementor will need a de-
velopment system with at least 1 megabyte of main memory.

By caching a number of variables which represent the execution
state of a Smalltalk-80 method in internal registers, an implementation
will probably get dramatically improved performance. A good host pro-
cessor should have sufficient internal registers to allow these values to
be cached in its registers. The exact number of registers needed to con-
tain cached values will depend upon the specifics of the interpreter de-
sign. However, as a general rule, 8 is probably not enough while 32 is
probably more than enough. For example, one of our implementations
for the Motorola 68000 processor could have easily made use of several
more than the 15 registers which were available.

Smalltalk-80 interpreters frequently look up values in tables and fol-
low indirect references. For this reason it is desirable that the host pro-
cessor provide good support for indexed addressing and indirection.

Hardware support for the Smalltalk-80 graphics model is another
major consideration. Smalltalk-80 graphics is entirely based upon the
manipulation of bitmaps. Although some implementations have simu-
lated this model using other display technologies (for example, by using
a vector oriented raster terminal), the results have been less than satis-
factory (see Chapter 5). Acceptable results will only be achieved if an
actual hardware bitmapped display is provided. A frequent concern of
new implementors is the performance of BitBlt, the bitmap manipula-
tion operation. One concern is whether specific hardware support will
be required for this operation. Our experience with the 68000 was that
adequate BitBIt performance was easy to achieve with straightforward
coding, while adequate bytecode interpreter performance was very diffi-
cult to achieve. This leads us to believe that a host processor capable of
achieving adequate performance when interpreting bytecodes will prob-
ably perform adequately when BitBlt-ing. In particular, the processor’s
ability to perform shifting and masking operations will affect the over-
all performance of BitBIt.

The
Implementation
Language

The choice of an implementation language for a Smalltalk-80 interpret-
er is typically a trade-off between the ease of implementation of the in-
terpreter and the final performance of the system. Implementors should

46

Design Decisions for Smalltalk-80 Implementors

consider using a high-level programming language as the first imple-
mentation tool. A high-level language based interpreter can be quickly
implemented and should be relatively easy to debug. Unfortunately, the
final performance of such implementations may be disappointing. This
may be the case even if a very good optimizing compiler is used.

It is generally accepted that the code generated for a large program
by an optimizing compiler will be “better” than that which a human
assembly language programmer would write for the same problem.
Conversely, for short code sequences, a human programmer can usually
write better code than that generated by an optimizing compiler. Al-
though a Smalltalk-80 interpreter may appear to be a complex piece of
software, it is actually a relatively small program. For example, our as-
sembly language implementation for the Motorola 68000 contains ap-
proximately 5000 instructions. Furthermore, a large portion of the
execution time tends to be spent executing only a few dozen of the in-
structions. These instruction sequences are short enough that carefully
written assembly code can achieve significantly better performance
than optimized compiler generated code. Our 68000 bytecode dispatch
routine consists of five instructions, while the bodies of many of the
push and pop bytecodes consist of only one or two instructions.

A successful Smalltalk-80 interpreter design will consist of an effi-
cient mapping of the virtual machine architecture onto the available
resources of the host processor. Such a mapping will include the global
allocation of processor resources (registers, preferred memory locations,
instruction sequences, etc.) for specific purposes within the interpreter.
An assembly language programmer will have complete freedom to
make these allocations. Such freedom is typically unavailable to a high-
level language programmer who must work within a general purpose
resource allocation model chosen by the designers of the compiler.

Object Pointer
Formats

The most common form of data manipulated by a Smalltalk-80 inter-
preter are Object Pointers (commonly referred to as Oops). An Oop rep-
resents either an atomic integer value in the range -16,384 to 16,383 or
a reference to some particular Smalltalk-80 object. The formal specifi-
cation uses a standard representation for Oops. This representation de-
fines an Oop to be a 16-bit quantity. The least significant of the 16 bits
is used as a tag which indicates how the rest of the bits are to be
interpreted. If the tag bit is a O then the most significant 15 bits are
interpreted as an object reference. If the tag bit is a 1 then the most
significant 15 bits are interpreted as a 2’s complement integer value.

47
Object Pointer Formats

Note that the size of an Oop determines both the total number of ob-
jects which may exist at any time (32,768) and the range of integer val-
ues upon which arithmetic is primitively performed.

Because Oops are used so frequently by the interpreter, their format
can have a large impact upon the overall performance of the interpret-
er. The most common operations performed upon Oops by the interpret-
er are testing the tag bit, accessing the object referenced by an Oop,
extracting the integer value from an Oop, and constructing an Oop
from an integer.

Even though the standard Oop format pervades the formal specifica-
tion, use of a different format will not violate the criteria for confor-
mance to the specification. This is possible because the internal format
of an Oop is invisible to the Smalltalk-80 programmer.

There are several possible alternative Oop formats which may offer
varying performance advantages. One alternative is to change the posi-
tion of the tag bit.

Placing the tag bit in the least significant bit position (the position in
the standard Oop format) is most appropriate for a processor which re-
flects the value of this bit in its condition codes. This is the case for the
Xerox processors? upon which the Smalltalk-80 system was originally
developed, and for some common microprocessors. Using such a proces-
sor, the tag bit is automatically “tested” each time an Oop is accessed.
A simple conditional branch instruction can then be used by the inter-
preter to choose between integer and object reference actions. Proces-
sors which lack this feature will require a more complex instruction
sequence, shifting the Oop, a masking operation, and comparison to per-
form the same test.

Placing the tag in the most significant bit position causes the tag to
occupy the sign-bit position for 16-bit 2’s complement processors. For a
processor that has condition codes which reflect the value of the sign
bit, a test of the tag becomes a simple branch on positive or negative
value.

Other factors which will affect the tag bit position might include the
relative performance cost of setting the least significant bit as opposed
to the most significant bit (is adding or logical or-ing a 1 less expensive
than the same operation involving 32,768) for converting an integer
into an Oop, and the relative cost of shifts as opposed to adds for con-
verting Oops into table indices.

The standard format uses a tag bit value of 1 to identify an integer
value and a tag bit value of 0 to identify an object identifier. Inverting
this interpretation has potentially useful properties, some of which are
also dependent upon the choice of tag bit position. For example, if a tag
value O is used to indicate an integer valued Oop and the tag occupies
the least significant bit position, then Smallinteger values are, in effect,
2’s complement values which have been scaled by a factor of 2. Such

e e—

SR S——

48

Design Decisions for Smalltalk-80 Implementors

values can be added and subtracted (the most common arithmetic oper-
ations) without requiring a conversion from the Oop format and the re-
sult will also be a valid Smallinteger Oop. Only one of the operands of a
multiplication operation will need to be converted from the Oop format
for the operation to yield a valid Smallinteger Oop.

If a tag value of O is used to indicate object identifier Oops and the
tag occupies the most significant bit position, then object identifier Oops
can serve as direct indices into a table of 8-bit values on byte address-
able processors. This would allow reference counting to be implemented
using an independent table of 8-bit reference-count values which is di-
rectly indexed using Oops. For a word addressed processor, the standard
format allows Oops to be used to directly index a 2 word per entry ob-
ject table.

The Object
Memory

The object memory implementation described in the formal specifica-
tion views the object memory as being physically divided into 16 physi-
cal segments, each containing 64K 16-bit words. Individual objects
occupy space within a single segment. Object reference Oops are trans-
lated into memory addresses using a data structure known as the Ob-
ject Table. The object table contains one 32-bit entry for each of the
32K possible object referencing Oops. Each object table entry has the
following format:

Bits 0-15 (Isb): The word offset of the object within its segment
Bits 16-19: The number of the segment which contains the object
Bit 20: Reserved

Bit 21: Set if the Oop associated with this entry is unused
Bit 22: Set if the fields of this object contain Oops

Bit 23: Set if object contains an odd number of 8 bit fields

Bits 24-31 (msb): This object’s reference count

For each segment there is a set of linked lists which locate all free
space within the segment. In addition there is a single list which links
all unassigned Oops and object table entries. Objects are linked using
Oop references.

The above design includes several implicit assumptions about the
memory organization of the host processor. It assumes that the unit of
memory addressability is a 16-bit word. It assumes that the processor
uses a segmented address space and that each segment contains 64K

CH——

49
The Object Memory

words. Finally, it assumes that at most 1024K words (16 segments) are
addressable. This organization may be considerably different from that
of an actual host processor. Many processors support a large, byte ad-
dressable, linear address space. Although the formal specification’s de-
sign can be mapped onto such a memory organization, such a mapping
will result in reduced interpreter performance if it is carried out dy-
namically.

An object memory design will consist of two inter-related elements,
the organization of the actual object space and the format of the object
table. The goal of the design will usually be to minimize the time re-
quired to access the fields of an object when given an Oop. However, if
main memory is limited, the goal of the design may be to limit the size
of the object table. A performance oriented object table will usually be
represented as an array which is directly indexed by Oops (or a simple
function on Oops). A hash table might be used for a space efficient ob-
ject table representation®.

The most important component of an object table entry is the field
which contains the actual address of the associated object within the
object space. Ideally this field should contain the physical memory ad-
dress of the object represented so that it may be used without any
masking or shifting operations. Such a format will permit the contents
to be used to directly address the associated object, either by loading
the field into a processor base register or by some type of indirect ad-
dressing mechanism. In this case, the size of the address field will be
the size of a physical processor address.

If the host processor’s physical address is larger than the 20-bits used
in the formal specification, the size of an object table entry will have to
be increased beyond 32-bits or the size of the reference count and flag
bits will have to be decreased. Since Oops are typically used as scaled
indexes into the object table, it is desirable that the size of an object ta-
ble entry be a power-of-two multiple of the processor’s addressable word
size so that object table offsets may be computed by shifting instead of
multiplication. For most conventional processors, 64-bits (8 bytes, four
16-bit words, two 32-bit words) would be the next available size. Howev-
er, a 64-bit object table entry will require 256K bytes and will probably
contain many unused bits. An alternate approach is to use separate
parallel arrays to hold the address fields and the reference count/flag
fields of each entry. This results in an effective entry size which is
greater than 32-bits without requiring a full 64-bit entry. Decreasing
the size of the reference-count field is another valid alternative. Since
most reference count values are either very small (8 or less) or have
reached the overflow value where they stick?, a reference-count field
size of 3 or 4 bits should be adequate. The main consideration will be
whether the host processor can efficiently access such a field.

50

Design Decisions for Smalltalk-80 Implementors

The Bytecode
Interpreter

The bytecode interpreter performs the task of fetching and executing
individual Smalltalk-80 bytecodes (virtual machine instructions). Before
examining the actual functioning of the bytecode interpreter, we will
consider the general question of time/space trade-offs within Small-
talk-80 implementations. A complete, operational Smalltalk-80 system
requires approximately one million bytes of storage to operate. The ac-
tual interpreter will occupy only a small fraction of this. (Our first im-
plementation, which was very bulky, required approximately 128K
bytes for the interpreter. A later assembly language implementation for
the same host needed less than 25K bytes.) Since Smalltalk-80 inter-
preters seem to strain the computational resources of conventional pro-
cessors, most interpreter designs will tend towards reducing execution
time at the expense of increasing the total size of the implementation.

The model implementation in the formal specification takes an algo-
rithmic approach to interpretation. The interpreter fetches a bytecode,
shifts and masks it to extract the operation code and parameter fields,
and uses conditional statements to select the particular operation to be
performed. While this approach is quite effective for illustrating the
encoding of the bytecodes it is often not suitable for a production inter-
preter because of the computation required to decode each bytecode. A
more efficient implementation technique for the bytecode dispatch oper-
ation may be to use the bytecode as an index into a 256-way dispatch
table which contains the addresses of the individual routines for each
bytecode. For example, rather than using one routine, as in the exam-
ple in Fig. 3.1, there could be seven individual routines, each one opti-
mized for pushing a particular constant value.

The model implementation exhibits a high degree of modularity. This
is particularly true in the area of the interface between the bytecode in-
terpreter and the object memory manager. The bytecode interpreter
makes explicit calls to object memory routines for each memory access.
The performance of a production implementation can, however, be im-
proved by incorporating intimate knowledge of the object memory im-
plementation into the bytecode interpreter. Many object memory
accesses may be performed directly by the interpreter without actually
invoking separate routines within the object memory manager.

As mentioned earlier, the selection of which interpreter state values
to cache is a critical design decision for the bytecode interpreter. The
designer must evaluate the cost of maintaining the cached values (load-
ing the values when a context is activated and storing some of the val-
ues back into the context when it is deactivated) relative to the actual
performance gains from using the cached values. The evaluation should
consider the average duration of an activation. Our observations indi-
cate that most activations span a small number of bytecodes (less than

51

Memory Management

10). Caching too much of the active context can thus lead to situations
where considerable execution time is spent caching values that are not
used over the span of the activation.

The model implementation caches the actual Oop values of several
context fields. This implies that these values must be decoded into real
memory addresses (performing an object table lookup or conversion
from Smallinteger format) each time they are used. An alternative is to
decode these values when they are fetched from the active context and
to cache the addresses. This means that the cached program counter
would be the actual address of the next bytecode and that the cached
stack pointer would be the actual address of the top element of the ac-
tive context’s stack. If this technique is used, care must be taken that
the cached values are correctly updated, e.g., when the memory manag-
er changes the physical location of objects (performs a segment com-
pression). It is also essential that the values of the stack pointer and
program counter field get updated when the active context changes.

The Smalltalk-80 system’s required support for multiple processes,
when implemented in an obvious manner, can impose an overhead
upon each bytecode. The formal specification requires that a process
switch may occur before each bytecode is fetched. An obvious way to
implement this requirement is to have a global boolean flag which indi-
cates that a process switch is pending, and to test this flag before fetch-
ing each bytecode. This technique has the disadvantage that the
overhead of testing this flag occurs for each bytecode executed even
though actual process switches are infrequent. Since the number of in-
structions required to implement most bytecodes is relatively small, this
test can be a significant overhead. Alternative implementations tech-
niques can avoid this overhead. For example, the address of the
bytecode dispatcher might be stored in a processor register. Routines
which implement bytecodes would then terminate by branching to the
address contained in the registers. A pending process switch could then
be signaled by changing the address in the register to the address of the
routine which performs process switches. When the current bytecode
finishes, control would therefore be transferred to the process switcher.

Memory
Management

The routines of the formal specification’s object memory manager may
be grouped into two categories. The first category consists of those rou-
tines which support accesses to objects. The second category consists of
those routines which support the allocation and deallocation of objects.

SRV "S-

52

Design Decisions for Smalltalk-80 Implementors

Object Allocation

The access routines (such as fetchPointer:ofObject: and
storeByte:ofObject:withValue:) are used by the bytecode interpreter to
store and retrieve the information contained in the fields of objects. In
many implementations of the bytecode interpreter, these functions will
not be performed by independent routines, but will be implicitly
performed by inline code sequences within the routines of the interpret-
er. The object allocation and deallocation routines form the bulk of the
memory manager.

Collectively, the memory management routines will probably com-
prise the most complex part of a Smalltalk-80 interpreter implementa-
tion. In addition, unless great care is taken in their design, the
percentage of execution time spent in these routines can easily domi-
nate the time spent in all other parts of the interpreter. Our initial im-
plementation was found to be spending 70% of its time within memory
management routines (see Chapter 5).

The bytecode interpreter normally requests the allocation of an object
in two circumstances. The first circumstance is the execution of a prim-
itive method (most commonly the primitive new or new:) which explicit-
ly calls for the creation of a new object. The second circumstance is the
activation of a new method. This implicitly requires the creation of a
context object to represent the state of the activation. The formal speci-
fication provides a single generalized set of routines which handle both
types of allocation requests. These routines perform the following ac-
tions. First they must assign an Oop which will be used to refer to the
new object. Second they must find an area of free storage within the ob-
ject memory, large enough to contain the requested object. Next they
must initialize any internal data structures (for example an object table
entry or object length field) used to represent the object. Finally, they
must initialize the fields of the object with a null value.

Observation of actual Smalltalk-80 implementations indicates that
the vast majority of allocation requests are for the creation of context
objects (see Chapter 11). In addition, most of these requests are for the
smaller of the two possible context sizes. A memory manager design
which optimizes the creation of a small context object should thus yield
better performance.

There are a number of possible approaches to achieving such an opti-
mization. A memory manager might have a dedicated list of available
contexts. These available contexts might be preinitialized and have pre-
assigned Oops associated with them. If the memory manager attempts
to ensure that this list will not be empty (perhaps by using a back-
ground process to maintain the list), then a context could usually be al-
located by simply removing the first element from the list.

Storage
Reclamation

53
Memory Management

A memory manager might choose to dedicate a memory segment to
the allocation of contexts. Since such a segment would only contain ob-
jects of a single size, the actual allocation and deallocation process
should be simplified.

Any scheme to optimize context allocation must, of course, conform
to the formal specification’s requirement that a context behaves as a
normal Smalltalk-80 object. The representation of activation records
(contexts) as objects contributes much to the power of Smalltalk-80 (it
allows programs such as the Smalltalk-80 debugger to be implemented)
but requires a large amount of system overhead to support. A major
challenge to Smalltalk-80 implementors is to develop techniques to re-
duce this overhead while preserving the inherent power of context ob-
jects.

Storage reclamation is the second major function of the Smalltalk-80
memory manager. While the Smalltalk-80 storage model allows a pro-
gram to explicitly request the creation of an object, it does not require a
program to explicitly request that an object be deallocated. Once an ob-
ject has been allocated it must remain in existence as long as it is ac-
cessible from any other object. An object may only be deallocated if no
references to it exist. It is the memory manager’s responsibility to auto-
matically deallocate all inaccessible objects. This process is commonly
referred to as garbage collection®. The classical method (called mark/
sweep) of performing garbage collection is to periodically halt process-
ing, identify all inaccessible objects, and then deallocate them. This is
commonly done as a two-phase process. First all accessible objects are
marked. This requires starting at some root object and traversing all
accessible pointers in the system. Second, all unmarked objects are
deallocated. With a large object memory, such a process may consume a
considerable period of time (ranging from several seconds to several
minutes). Because of the interactive nature of the Smalltalk-80 system,
such delays are unacceptable. Instead, a garbage collection technique
which distributes the storage reclamation overhead over the entire
computation is required. The most commonly known technique for
achieving this is reference counting. This is the technique used by the
formal specification’s model implementation.

Reference counting requires that each object have associated with it
a count of the number of pointers to it which exist in the system. Each
time an Oop is stored into a field the reference count of the object asso-
ciated with the Oop is incremented. Since storing an Oop into a field
must overwrite the previous contents of the field, the reference count
associated with the old value is decremented. When the reference count
of an object reaches zero, the object is deallocated. The deallocation of

54

Design Decisions for Smalltalk-80 Implementors

an object invalidates any object references contained in it and hence
will decrement their reference counts. This may recursively cause other
objects to be deallocated.

Although reference counting eliminates the long delays characteristic
of mark/sweep collection, it introduces considerable overhead into the
normal operations of the system. We have found that for our host pro-
cessor (a Motorola 68000), the code sequences that implement simple
bytecodes such as the push and pop operations using reference counting
are several times longer than the equivalent routines without reference
counting. A Smalltalk-80 interpreter design that can decrease this over-
head should have greatly improved performance.

There are several possible approaches to achieving this improved
performance. One technique which reduces the actual counting over-
head is called deferred reference counting®. It is based upon the obser-
vations that the most frequent and most dynamic object references
occur from context objects and that many of these references are quite
transitory. For example, assigning an object to a variable causes the ob-
ject’s reference count to be first increased by one as it is pushed onto
the context’s stack, then decreased by one as it is popped from the
stack, and finally increased by one as it is stored into the variable. Our
measurements show that “store instance variable” bytecodes (the most
common means of creating an object reference from a non-context ob-
ject) account for less than 4% percent of the dynamically executed
bytecodes. If the need to perform reference counting for references con-
tained within contexts is eliminated, then almost all of the reference
counting overhead will have been eliminated.

A Second
Generation
Design

The first Tektronix Smalltalk-80 interpreter was implemented in Pas-
cal on a Motorola 68000 (see Chapter 5). Even though the performance
of this implementation was so poor that it was only marginally useful,
the experience gained from this effort enabled us to design a new inter-
preter which exhibits much better performance. In developing this sec-
ond generation interpreter we encountered many of the design trade-
offs mentioned in the previous sections of this paper. The new inter-
preter was designed and implemented by the author over a period of
approximately nine months.

We choose to continue using a 68000 as the host for the new inter-
preter but component advances enabled us to use a 10 Mhz processor
with one memory wait state instead of an 8 Mhz processor with two
wait states. We choose to implement the interpreter in assembly lan-

55

Summary and Conclusions

guage. In addition, great care was taken in choosing the code sequences
for all of the frequently executed portions of the interpreter. The com-
mon byte codes are all open coded with separate routines for each possi-
ble instruction parameter.

The active context’s stack pointer, instruction pointer, and home con-
text pointer are cached in 68000 base registers as 68000 addresses. The
stack pointer representation was chosen such that 68000 stack-oriented
addressing modes could be used to access the active context stack. Oth-
er registers are dedicated to global resources such as addressing the ob-
ject table and accessing free context objects.

The Oop format chosen requires only a simple add instruction to con-
vert an Oop into an object table index. Object table entries can be di-
rectly loaded into base registers for accessing objects. A separate
reference-count table is used. Deferred reference counting is used to
limit the reference-counting overhead and to streamline the code se-
quences for push/pop bytecodes. Complete context objects are not creat-
ed for leaves of the message send tree. Context objects are only created
if a method references the active context or causes another new context
to be activated.

The initial (before any tuning and without some optional primitives)
performance benchmarks of our second generation interpreter (see
Chapter 9) show that it is between five and eight times faster than our
original implementation. We feel that these results demonstrate that it
is feasible to build usable microprocessor based Smalltalk-80 implemen-
tations.

Summary and
Conclusions

For any given host processor, its performance as a Smalltalk-80 host
can potentially vary widely depending upon how the Smalltalk-80 inter-
preter is implemented. The goal of a Smalltalk-80 implementor should
be to achieve the best possible mapping of the Smalltalk-80 virtual ma-
chine specification onto the chosen host computer. To accomplish this,
the implementor will need to intimately understand both the internal
dynamic behavior of the Smalltalk-80 virtual machine and the idiosyn-
crasies of the host processorr We would recommend that an
implementor gain an understanding of the behavior of the virtual ma-
chine by first using a high-level language to implement the interpreter
as described by the formal specification. This implementation can then
be used to study the actual behavior of the Smalltalk-80 system and ex-
plore design alternatives. Finally, a new implementation should be
designed which takes maximum advantage of the characteristics of the

e e i

56

Design Decisions for Smalltalk-80 Implementors

host processor. We have presented a few of the design alternatives
which should be considered by Smalltalk-80 implementors as they de-
velop their interpreters.

References 1. Goldberg, Adele, and Robson, David, Smalltalk-80: The Language
and Its Implementation, Addison-Wesley, Reading, MA, 1983.

2. Lampson, Butler W., “The Dorado: A High Performance Personal
Computer,” Xerox PARC Technical Report CSL-81-1, Jan. 1981.

3. Kaehler, Ted, “Virtual Memory for an Object-Oriented Lan-
guage,” Byte vol. 6, no. 8, pp. 378-387, Aug. 1981.

4. Baden, Scott, “Architectural Enhancements for an Object-Based
Memory System,” CS-292R Class Report, Computer Science Div.,
Dept. of E.E.C.S., University of California, Berkeley, CA, Fall 1981.

5. Cohen, Jacques; “Garbage Collection of Linked Data Structures”,
ACM Computing Surveys vol. 13, no. 3, pp. 341-367, Sept. 1981.

6. Deutsch, L. Peter, and Bobrow Daniel G., “An Efficient Incremen-
tal Automatic Garbage Collector,” Communications of the ACM
vol. 19, no. 9, pp. 522-526, Sept. 1976.

PART TWO

TN

£ ONCE MOKE.
34, \’\/\/\j

Dee DD,, GTeeP

Z)'N‘MJ N
! sannn >
oA~

b (_ 8 ‘EEWE/R\}
LAD Comp)LER Does NoT N

ONDERSTAND => ‘M, 3o

-
O WELL, Ao, \
LATER., \J\/\J S

314
CLASS TEXT IMACE
! T THNK T
KNow WHAT
_ AT 18

AU RIGHT!
Hey EverysonY
SMALLTALK WORKS

|
|

Implementing the
Smalltalk-80 System:

The Tektronix
Experience

Paul L. McCullough*

Tektronix, Inc.
Beaverton, Oregon

Introduction

The Tektronix Smalltalk-80 implementation went through a number of
hardware and software phases. Our experience will probably prove to
be similar to that of other research and prototype groups desiring to
implement the Smalltalk-80 system. At best, we will point out some
mistakes to avoid; at the very least we can provide an entertaining view
of our successes and follies.

This paper gives an overview of our initial hardware and software
environments and our initial implementation design. We then present a
fairly detailed account of debugging our first system. Next, we describe
the evolution of our hardware, software, and development tools. We
conclude with some observations and conclusions about the
Smalltalk-80 system and its implications for the future.

Readers should note that we were debugging both our implementa-
tion and the formal specification. Although we detected a number of er-
rors in the formal specification, these errors have since been corrected
and are discussed herein to provide historical perspective.

*Mr. McCullough is currently employed by Xerox Palo Alto Research Center, Palo Alto,
California. Copyright © Tektronix, Inc., 1982. All rights reserved.

59

60

Implementing the Smalltalk-80 System: The Tektronix Experience

Initial Goals

Initially we had four goals for our Smalitalk-80 work:

+ Learn about the Smalltalk-80 system, in particular the implemen-
tation of the virtual machine,

* Learn about programming in the Smalltalk-80 language,
* Report on errors in the book draft, and

¢ Implement the virtual machine, realizing that it would not be our
final implementation.

Tektronix had no previous experience with object-oriented software, so
we were very interested in having a system with which we could
interactively program in the Smalltalk-80 language, and in studying
the Smalltalk-80 virtual machine. As part of our agreement with Xe-
rox, we were to use our implementation as a means to detect errors in
the book draft and to identify ways in which the book might be made
clearer. We realized that our initial implementation would suffer from
performance problems, but felt that a timely implementation was more
desirable than a high performance one.

Initial
Hardware

Our initial hardware consisted of:

+ Motorola 68000 processor (8 MHz)
* 4 MHz proprietary bus

768 Kbytes of RAM

¢ Tektronix 4025 terminal

* A microprocessor development system, used as a file server

The choice of hardware was based on the availability of a Tektronix
designed 68000-based system, along with the need for a large, prefera-
bly linear, address space. We also wanted to use a processor amenable
to the construction of personal workstations. The Tektronix 4025 termi-
nal is a raster graphics terminal, primarily oriented toward drawing
vectors. While our bitmapped display was being designed, the 4025
served as an interim display device. Because the initial Smalltalk-80
virtual image did not depend on the use of a file system, we only used
the microprocessor development system as a file server to load and
store virtual images.

61
Initial Software

Software
Development
Environment

Our virtual machine was developed in a cross-compilation environment
using a DECSYSTEM-20. The bulk of the virtual machine was written
in a dialect of the proposed ISO Standard Pascal. This particular dialect
of Pascal supports the independent compilation of modules and pro-
duces assembly language files which are assembled and linked. The re-
sulting executable file is downloaded to the 68000-based system over a
1200 baud serial line. Though the 1200 baud line was an obvious bottle-
neck, the Pascal software already existed on the DECSYSTEM-20 and
we had no desire to port it.

Initial Software

Object Memory
Manager

According to Dan Ingalls: “an operating system is a collection of things
that don’t fit into a language. There shouldn’t be one”!. Taking those
words to heart, we chose to implement our virtual machine on a system
that had no operating system. This choice meant that we could not rely
on runtime services normally provided by an operating system and had
to write those portions that we needed, such as routines to handle
input/output to an RS-232 port and perform IEEE 32-bit floating point
arithmetic.

Our software implementation team consisted of three software engi-
neers. We chose to partition the programming task into three distinct
parts:

* Object Memory Manager
¢ Interpreter and Primitives

+ BitBIt

The initial object memory manager was, for the most part, a strict
translation from Smalltalk-80 to Pascal of the methods presented in the
formal specification. During the translation phase, we noted four minor
typographical errors in the draft of the book involving improper bit
masks, or incorrect variable, constant, or method names. We chose to
implement the reference-counting garbage collector. Later, because the
image creates circular garbage, we added a simple, recursive, mark-
sweep collector. The translation process took less than one week and re-
sulted in a working memory manager that maintained a very clear
boundary between itself and the rest of the virtual machine. As dis-
cussed below, this clear differentiation is both a blessing and a curse.
With minor changes due to different dialects of Pascal, we were able
to run programs that tested the object memory manager on the
DECSYSTEM-20 with its more sophisticated debugging and perform-

62

Implementing the Smalltalk-80 System: The Tektronix Experience

Interpreter and
Primitives

ance monitoring software. The test programs read the virtual image,
then made calls to the various entry points in the memory manager.
Then, with Pascal write statements and the debugger, we were able to
examine the state of the object space and determine whether the mem-
ory manager was working correctly. These tests indicated several errors
in the book’s methods: for example, the method that determined where
to find the last pointer of an object was incorrect for CompiledMethods,
and the recursive freer needed an extra guard to prevent Smalllntegers
from being passed off to the pointerBitOf: routine.

At this point, we were able to run test programs that created in-
stances of classes, stored object pointers in other objects, destroyed such
links and thus invoked the deallocation of objects, and performed com-
pactions of the object space. Further testing demonstrated that the
book’s method for swapPointersOf:and: was also incorrect.

In order to speed up the performance of the deallocation portions of
the memory manager, we modified the countDown: routine to call
forAliObjectsAccessibleFrom:suchThatDo: only when the object’s refer-
ence count was going to drop to zero, thus saving a procedure activation
that was usually unnecessary.

A few other minor changes provided us with a memory manager that
was tested on the DECSYSTEM-20. Thus, we had a great deal of assur-
ance that the memory manager would perform correctly on the
68000-based system. Also, we felt that when problems were encountered
in our implementation of the virtual machine, we could concentrate on
looking for the problem in the bytecode interpreter or primitives, and
could ignore the memory manager. In actual practice we made many,
many runs of the virtual machine before any problems were found in
the memory manager. We heartily recommend having a trustworthy
memory manager.

In parallel with the development of the object memory manager, we
coded the bytecode interpreter and primitives. The interpreter and
many of the primitives were written in Pascal. The arithmetic primi-
tives were coded in assembly language in order to simplify the mainte-
nance of the small integer tag bit.

The outer block of the interpreter consists of a call to an initializa-
tion routine and a loop containing a very large case statement that acts
as the bytecode dispatcher. While the memory manager was a fairly lit-
eral translation of the book’s methods, much greater care was exercised
in the construction of the interpreter. Code that in the book was several
message sends was often collapsed into a single Pascal statement. We
included in our interpreter the capability of producing traces which du-
plicate those supplied with the virtual image by Xerox.

In order to give the reader a measure of the complexity of
implementing an interpreter (in Pascal), we present the lengths (in

BitBlt

63

Initial Software

printer pages at 60 lines per page) of some of the major routines. These
figures include the length of tracing code:

* Looking up a message, including the perform: primitive: two and
one-half pages

¢ Sending a message (including cache lookup): one and one-half
pages

¢ Executing the current method, including the primitives written in
Pascal: twelve pages

¢ Returning a value from the active context: one and one-half pages

* The scan characters primitive (used for text composition): three
and one-half pages

« Large integer primitives: four pages

¢ Process primitives: five pages

We strongly recommend that the first implementation of an interpreter
be in a high-level language. By writing the virtual machine in a high-
level language, implementors gain a more thorough understanding of
the virtual machine as well as a much more quickly completed imple-
mentation.

The BitBIt primitive handles all graphics in the Smalltalk-80 system.
Due to its importance, we decided to have one person concentrate on its
implementation. The routines to implement BitBlt were written in as-
sembly language and closely reflect the structure of the BitBlt methods
in the book. To assist in the debugging of BitBIt, there are many condi-
tionally assembled calls to the Pascal runtime print routines. The main
BitBIt routine accepts one argument, the address of a Pascal record con-
taining the various BitBlt parameters. When called, the routines per-
form the following actions:

* Clip the source parameters to the physical size of the source form
¢ Clip the clipping rectangle to the true size of the destination form
» Clip and adjust the source origin

* Compute the masks necessary for the logical operations

¢ Check for possible overlap of the source and destination forms

¢ Calculate the offsets for the starting and ending words

¢ Copy the bits as appropriate

64

Implementing the Smalltalk-80 System: The Tektronix Experience

Summary of Runs

Certain optimizations are performed for the special cases of clearing,
setting, or complementing the destination forms. BitBit is approximately
2 Kbytes of assembly code.

We maintained a fairly detailed log of our attempts to get the virtual
machine up and running. The comments we made for each of these
runs may be helpful to future implementors of the virtual machine.
This summary should provide a sense of the types of errors and prob-
lems one should expect when implementing the virtual machine.

1.

Reached the first send, then encountered an error in a debugging
routine we had written.

. Reached the first send again, encountered another error in a

debugging routine.

. Encountered a Pascal compiler bug.

4. Reached first send of the @ selector, and discovered that we had

transcribed the constant for class Smallinteger incorrectly.

. The method specified in the book for initializing the stack pointer

of a new context was incorrect.

6. We forgot to initialize the sender field when creating a context.

7. In the book, the method returnValue:to: caused the reference count

10.

11.

of the sender context to go to zero (thereby making the sender
garbage) just before returning to that context. We had to explicitly
increase the reference count of the sender context, perform the re-
turn, then explicitly decrement the reference count.

. We had decided to implement the “common selector” bytecodes

using full message lookup. Unfortunately, the method header for
selector == in class Object did not specify the execution of a
primitive. We patched the image to specify the correct primitive
number.

. The first conditional branch we encountered failed because we did

not advance the instruction pointer past the second byte of the in-
struction.

We discovered that the source code for Smallinteger < did not
specify a primitive, resulting in an infinite recursion. We patched
the image again.

Discovered that other methods of class Smallinteger did not have
primitives specified. We retrenched to executing the following se-
lectors without lookup: class, = =, arithmetics, relationals.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.
24.

25.

26.

27.

65
Initial Software

Selector at: failed. Qur fault, in the routine positive16BitValueOf: a
“>” should have been a “<”.

Multiply primitive failed due to an assembly language coding er-
ror.

All relational primitives written in assembly language had an in-
correct (and uninitialized) register specified.

Made it through the first trace. (Listings of four traces of the in-
terpreter’s internal operations were included with the first distri-
bution of the virtual image. Subsequent distributions included
three traces.)

The book’s method for the primitive value: caused the stack to be
off-by-one.

Once again, we found an error initializing the stack pointer of new
contexts.

Again, the stack pointer is off. These three errors were caused by
an incorrect constant in the book draft.

A message selector was not found. Another run is necessary to de-
termine what happened.

At the beginning of execution for a block, the cached stack pointer
is one too large. In the past, message sends and returns have
worked because the routine that stored the stack pointer
decremented it.

We had coded the at:put: primitive incorrectly: we forgot to have it
return anything, hence the stack was off-by-one.

We incorrectly coded the at:put: primitive with an uninitialized
variable.

The at:put: primitive had a > that should have been a > =.

The Smallinteger bitShift: primitive added in the Smalllnteger bit,
but should have Or’ed it in.

Interpreting lots of bytecodes, unfortunately not the correct ones.
Apparently, we took a bad branch somewhere.

We found that the book’s methods for the bytecode “push self” did
not necessarily work for block contexts.

Almost through the fourth trace when the Smallinteger division
primitive failed to clear the high-order half of a register. The er-
ror was detected by a Pascal runtime check.

66

Implementing the Smalltalk

28

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

-80 System: The Tektronix Experience

. Through the fourth trace when Sensor primMousePoint dies be-
cause of a clash between the interpreter and the Pascal runtimes.

We are well beyond the fourth trace when we discover that the
method frame:window:para:style:printing: has a MethodHeader ex-
tension that specifies primitive number 0. We had assumed that
an extension always specified a valid primitive number, but find
that it may also be used to specify a method with more than four
arguments.

We have changed all unimplemented primitives so that they fail,
and now correctly handle primitive 0 in MethodHeader extensions.
By now, we should have something up on the 4025 display, but do
not. Investigating, we find that the book says that the bitmap for
a Form is the first field, whereas the sources say it is the second
field.

We are halftoning the display. We have to make a few adjust-
ments to prevent overrunning the display. Halftoning will take a
long time, approximately two hours. After a while, a runtime ex-
ception was raised by a Pascal support routine that contained a
bug.

The “T” for the TopView window title tab is present on the dis-
play. Interpreter stopped after sending copyTo: to a Smallinteger.

We have disabled halftoning to the 4025, continuing with the
study of the problem of sending copyTo: to a Smallinteger.

The problem is that the BitBlt primitive, copyBits did not return
anything, thus forcing the stack off by one. Similarly, beDisplay,
and beCursor did not return anything. We have added more dis-
play memory to the 4025.

Hurray! “Top View” window title tab is on the screen. Pascal
runtime checks detected an out-of-range scalar while setting up
arguments for copyBits. We have always assumed that BitBlt argu-
ments are unsigned, but that is not so. We were told that BitBIt
should do source clipping, so we will add that to BitBIt.

The entire “Top View” window is on the display, then erased. We
eventually crashed because we are out of object space, but unsure
why.

We are out of object space because the book’s methods for super-
class send was incorrect: another level of indirection is necessary.

We now have “Top View” window, Browser, and Transcript window
on the display. Interpreter stopped when the mouseButtons primi-
tive failed.

39.

40.

41.

42.

43.

44.
45.

46.

67
Initial Software

We turned on halftoning to see what would happen. This was a
mistake because windows are halftoned black and then white. We
decided to reload and try again without halftoning. ’

We have reached the idle loop, checking if the mouse is in any
window. We changed the position of the mouse (by altering two
memory locations) and placed it within the browser. The browser
awoke and refreshed four of its panes. The fifth pane (code pane)
caused an interpreter crash with a Pascal out-of-range error due
to a minor bug in the mod primitive.

Great excitement! We have refreshed the window containing a
“Congratulations!!” message. Eventually we crashed because the
Float < primitive fails. The system tried to put up a Notify win-
dow, but had difficulty because of other primitive failures. Howev-
er, it was able to put up messages in the Transcript window. For a
system that is not yet fully implemented, it is amazingly robust.
We noticed that certain BitBIt operations seem to put up incorrect
information, then erase it. For example, putting up the “Top
View” title tab, the text reads “Top Vijkl” for a short time, and
the incorrect part is then repainted. Investigation showed the
method computeMasks to have a < selector that should have been
a < =, an error carried over from the book.

Generally poking around with the system. We have found that we
need floating point primitives in order for scroll bars to work, so
we have implemented all but the fractionalPart primitive. Rather
than develop an IEEE Floating Point package, we acquired one
from another group at Tektronix. We have also speeded up BitBlt
by using 4010-style graphics commands with the 4025.

We have implemented object memory statistics to report the num-
ber of fetchPointers, storePointers, etc. performed. We have also
added a lookup cache for faster message send processing. A cleri-
cal error in the caching routines crashes the virtual machine.

An uninitialized variable causes the cache to misbehave.

The cache is functioning well. Our initial algorithm is to exclu-
sive-or the QOops of the receiver’s class and the method, then ex-
tract bits 3-7 and index a 256 element array of 8 byte entries. The
interpreter definitely runs faster with the cache. The cache con-
sists of the Oop of the selector, Oop of the receiver’s class, Oop of
the method, the most significant byte of the method header, and
one byte indicating either the primitive index or 0.

Tried a new hash function, shifting two bits to the left before the
exclusive-or because we observed that the Oops of different selec-

68

Implementing the Smalltalk-80 System: The Tektronix Experience

Summary of
Initial Software

tors in the same class are very similar to one another. Some
speedup was noted.

47. Another hash function, this time adding the Oops rather than ex-
clusive-oring them. No noticeable change. We did move the mouse
to the first pane of the Browser and crashed the system when the
interpreter passed a Smallinteger to the memory manager.

48. Further examination of the previous problem shows that we did
not cut the stack back far enough after a value: message. This bug
was carried over into our code from the book, but only appears
when sending value: within an iterative loop.

49. We have fixed value:, now we need to write the perform: primitive.

50. We have installed perform:, but get an infinite recursion because
the floating point package is not IEEE format. We will write one
in Pascal.

51. With the new floating point code, we can now cut text, pop up
menus, and so on. This is great!

At this point, we added some simple performance monitoring code. We
counted the number and type of object memory references, the number
of bytecodes executed, and information concerning the performance of
the lookup cache. For each bytecode executed, an average of just under
10 object memory references were made. The majority were calls to
fetchPointer:, then storePointer:, fetchByte:, and fetchClass:. The various
lookup cache algorithms were found to perform either fairly well (50 to
70% hit rate) or very poorly (20% or worse hit rate). Evidently, caching
algorithms either perform quite well or miserably.

We feel that we were able to implement a relatively complex piece of
software in less than six weeks (that is, from nothing to a working sys-
tem) in less than 60 runs for several reasons:

* We were fortunate to have very good software engineers.
¢ We had a well-defined task.

¢ Because it took so long to load the virtual image (about 10 min-
utes) from the file server and so long (again, 10 minutes) to
download our virtual machine from the host, we were very careful
in coding and in analyzing crashes. We were also sharing the hard-
ware with another group, so we made good use of our time on the
machine.

* The specification, though not without error, was well written.

69
The Second Virtual Image

The Second
Virtual Image

About this time, we received the second virtual image from Xerox Palo
Alto Research Center (PARC). With this image, the handling of primi-
tive methods was much cleaner, access to BitBlt was improved, the ker-
nel classes were rewritten, and a source code management system was
added. Several significant changes to the virtual machine specification
were made, with the intention that these would be the final modifica-
tions. The sgcond image also made use of the process primitives, while
the first image did not.

Because a general cleanup of our interpreter seemed a good idea, and
because a fair amount of the interpreter needed to be changed to sup-
port processes and new primitive numbers, we rewrote much of it. A
history of our runs for the second virtual image follows:

1. We got our “Initializing . . .” message, and the system crashed be-
cause we were trying to initialize the cursor frame buffer. Since
our bitmap display was not yet available, the presence of this code
was premature.

2. We are through one-third of the first trace, but a conditional
branch bytecode branched the wrong way.

3. Several problems noted:

¢ Metaclass names no longer print properly on our traces.

¢ We encountered off-by-one errors in stack operations while han-
dling bytecode 187 because we forgot to adjust the stack index.

« We encountered off-by-one errors in stack operation for
Smalllinteger //.

* Our trace does not print operands for Smalllnteger * properly.

+ We need to carefully check the code for all stack operations.

4, M68000 stack overflow causes parity errors.

5. We are through trace 1, and three-quarters through trace 2 when
Pascal detects an out-of-range scalar because the routine
returnValue:to: returned to a deallocated block context. We had
failed to increase a reference count.

6. We are almost halfway through trace 3 when we hit an
unimplemented process primitive. We also noticed the primitive
return of an instance variable did not pop the receiver, thus caus-
ing the stack to be off-by-one.

70

Implementing the Smalltalk-80 System: The Tektronix Experience

7. We are about 60% through trace 3 when we try to add nil to an
instance of class Rectangle. Caused by our coding error: when a di-
rect execution send fails, we fail to tidy up the stack pointer.

8. We find that we need to implement the process primitives.

9. BitBlt fails to clear the high-order bits of a register causing a crash
on the 21380th message sent.

10. Sending the selector + to an Array fails. Stack is off-by-one be-
cause the copyBits primitive failed to return self.

11. We find that the resume: primitive does not work due to an
uninitialized variable.

12. More problems with resume:, it fails to set a boolean.

13. More problems with the resume: primitive: the process to be re-
sumed has nil as its instruction pointer because the initial instruc-
tion pointer is not set in primitiveBlockCopy.

14. The resume: primitive works finally! Unfortunately, the wait prim-
itive does not because of an incorrectly coded branch.

15. The wait primitive works, and we are through the third trace cor-
rectly. We forgot to code the setting of the success boolean for
primitive become:, so a notify window is created.

16. Fired up the system. We have executed more than 15,000,000
bytecodes and it is still alive!

In order to improve performance, we made many changes to the inter-
preter and the memory manager. Changes to the interpreter included
the caching of absolute addresses in the interpreter, thus employing
considerably fewer calls to the memory manager. For example, to ex-
tract the fields of a source form, rather than a fetchPointer call to the
memory manager for every field, the interpreter merely cached an ab-
solute address and stepped through a range of offsets. Within the mem-
ory manager, many procedure calls were replaced with macro calls that
were expanded by a macro preprocessor. Not only did this save the
overhead of procedure calls, but quite often allowed common
subexpression elimination to occur, thus actually decreasing the
amount of compiler-generated code.

We also sped up certain parts of the interpreter based on where we
believed the interpreter was spending its time. With these optimiza-
tions, performance is approximately 470 bytecodes a second.

An observation: Utilizing a raw computer (that is, one without an
underlying operating system) to implement a Smalltalk-80 system is a
double-edged sword: on the one hand, you can place data structures and

71
Performance Modeling Tool

code anywhere in the system, and you have complete control of the
hardware. On the other hand, the lack of performance monitoring tools
and underlying file systems can be a problem because it takes time to
implement them, rather than just interfacing to them.

Second Version
of the Hardware

At about this time, we added floppy disks to the system, as well as a
utility program that could save and restore arbitrary memory locations
on the disks, thus freeing us from the microprocessor development sys-
tem file server. The 10 minute delay for the loading of a virtual image
was reduced to about 45 seconds. A more dramatic change to the hard-
ware was the addition of our bitmap display. No longer would we have
to translate bitmap operations to vector drawing commands on the
4025, nor wait for a window to be halftoned. We also added a standard
Tektronix keyboard and a mouse. In order for the mouse and keyboard
(as well as portions of the Smalltalk-80 software) to work, we also added
a one millisecond timer interrupt.

As part of another project, a new M68000 processor board was made
available to us. Recall that the bus that we were using ran at 4 MHz,
which introduced wait states into the M68000. The new processor board
used a one longword data cache and a one longword instruction cache
to reduce bus requests. This resulted in a 709% speedup in system per-
formance, to approximately 800 bytecodes per second.

The Third
Virtual Image

At this point, our goal became to build a virtual machine that was
clearly faster (approximately 4000 bytecodes per second), but to do it
quickly and at relatively low expense. The method we chose was to de-
velop a performance analysis tool and, using the results of the measure-
ments, to rewrite time consuming portions of the virtual machine in
assembly language. The following sections summarize our findings and
our techniques for speeding up the virtual machine.

Performance
Modeling Tool

To monitor the execution of the virtual machine, we developed a simple
analysis tool that was called by the one millisecond timer interrupt rou-
tine. Each time it was called, it stored the value of the interrupted

72

Implementing the Smalltalk-80 System: The Tektronix Experience

M68000 program counter. By changing a memory location, a routine
could be activated to print a histogram showing ranges of program
addresses, the number of times the program counter was found to be
within the range, and the percentage of time spent within the range.
The size of the address range for each line of the histogram was
selectable by the user. We mapped routine addresses to these ranges so
that the histogram showed time spent in each routine. This tool proved
to be invaluable in speeding up the virtual machine.

Prior to utilizing this tool, we decided to measure how much time
was spent in the interrupt service routine. The Smalltalk-80 virtual
machine expects a timer interrupt every millisecond and the routine
checks the mouse and keyboard motion registers. If a change has oc-
curred, the routine makes note of the change so that the bytecode dis-
patch loop can create a Smalltalk-80 event. Like much of our virtual
machine, our timer interrupt routine was initially written in Pascal.
Because the interrupt routine has many basic blocks, and the optimizer
of the Pascal compiler operates only upon one basic block at a time, the
interrupt service routine spent a great deal of time reloading registers
with previously loaded values. We discovered that an amazing 30% of
the M68000 cycles were going to the interrupt service routine! One of
the first optimizations that we performed was to take the Pascal com-
piler-generated code and to perform flow analysis on it. The new inter-
rupt service routine consumed 9% of the M68000 cycles. Future plans
call for hardware to track mouse and keyboard events, and for timers to
interrupt the M68000 only when necessary (for example, when an in-
stance of class Delay has finished its wait period).

The Results of
Performance
Monitoring

The performance monitoring tool showed us some statistics that were
surprising to us (the percentage figures presented below do not include
time spent in the interrupt service routine nor the performance moni-
toring tool). Approximately 70% of the M68000 cycles were being spent
in the memory manager, 20% in the interpreter and primitives, and
10% in BitBIt. The bulk of the time in the memory manager was spent
in only a few routines: fetchPointer.ofObject:, storePointer:ofObject:-
withValue:, fetchClassOf:, countUp:, countDown:, and two sets of routines
generally referred to as the recursive freer and the niller. Previous sta-
tistics we gathered had indicated that fetchPointer:ofObject: and store-
Pointer:ofObject:withValue: were popular routines, but they were rela-
tively short and (so it seemed) should consume relatively little processor
time.

73
The Results of Performance Monitoring

Looking at the Pascal-generated code, we felt that we could do far
better with assembly language, and we recoded all memory manager
routines that the interpreter and primitives could call directly.
Recoding fetchPointer:ofObject: resulted in a 4.5% speedup. Next, we
recoded storePointer;ofObject:withValue: and achieved an additional 13%
speedup. The major difference between these two routines is in refer-
ence counting: when storing pointers, reference counts must be updated;
when fetching pointers they do not. Although we had previously con-
cluded that reference counting was an expensive operation, we now had
measurements of just how expensive. After recoding in assembly lan-
guage all the routines callable by the interpreter and primitives, the
system was an aggregate 199% faster.

Next, we considered routines that were private to the memory man-
agement module. From the histograms, it was obvious that we spent a
great deal of time initializing just-instantiated objects to nil pointers (or
zeroes for non-pointer objects). This inefficiency again arose from the
strict basic block analysis of the Pascal compiler. For the price of a pro-
cedure call to an assembly language routine, we were rewarded with a
speedup of nearly 10%.

Another major change to the memory manager came in the area of
the so-called recursive freer. When an object’s reference count drops to
zero, this set of routines is activated to decrement the reference counts
of the object’s referents and, should their counts drop to zero, recursive-
ly free them. The first attempt at speeding up this process was done in
Pascal and resulted in nearly a 10% speedup. Later on, we rewrote the
recursive freer again in assembly language achieving an additional
speedup.

The instantiation of objects was also expensive because several proce-
dure calls were made. We rewrote this code (still in Pascal), collapsing
several procedures into one. Later, the instantiation routines were re-
written in assembly language.

Changes to the interpreter and primitives were done in an interest-
ing manner. Recall that we had a functioning, albeit slow, interpreter.
With the belief that it is far better to change one thing at a time, rath-
er than everything at once, we modified a small portion of the inter-
preter and tested the change. Once the change was shown to be
satisfactory, we changed another part of the interpreter.

Initially, we rewrote the bytecode dispatch routine, but, in keeping
with our philosophy of small changes, none of the bytecode interpreta-
tion routines. Thus, the assembly language bytecode dispatch routine
set a boolean indicating that the assembly language dispatch had failed
and that the Pascal routine would have to take over. Then we added
bytecode interpretation routines, more or less one at a time. Eventually,
we were able to discard the Pascal dispatch loop and bytecode inter-
preters completely.

74

Implementing the Smalltalk-80 System: The Tektronix Experience

Once all the bytecode interpretation routines were completed, we
turned our attention to the primitive routines. These changes were ac-
complished in a similar manner: initially, all assembly language primi-
tives failed, forcing the Pascal-coded primitives to run. We would then
select a primitive, code it in assembly language, and test it. Once it was
found to be acceptable, we selected another primitive to re-code. Final-
ly, the Pascal primitives were discarded. Rather than call high-frequen-
cy primitive routines, we included many of them in-line.

In order to save some procedure calls to the memory manager when
instantiating objects, the interpreter first tries to directly acquire the
new object off the free lists. If the attempt fails, the interpreter calls
the memory manager. Such “fuzzing” of the line between the pieces of
the virtual machine seem necessary to achieve acceptable performance
on current microprocessors. This demonstrates how a clear boundary
between the memory manager and the rest of the virtual machine is
both a blessing and a curse.

The changes to the memory manager and interpreter eventually re-
sulted in a 3500 bytecode per second system.

The Third and
Fourth Images

Our technique of making incremental changes to the virtual machine
enabled us to use a working system and to bring up new virtual images
as they were received from Xerox. A log of the attempts to run the
third image follows:

1. At Xerox, the display bitmap is simply an object in the object
space. In our implementation, the display bitmap lives at a specif-
ic address, and we encountered a problem because this image
sends the become: primitive to the current display object. We
modified our code in the become: routine.

2. We encountered a Pascal subscript-out-of-range error. The routine
that returns instance variables was coded incorrectly, due to an
error in the book’s specification.

3. There are some new primitives related to the Xerox implementa-
tion in the image. We modified our interpreter to understand
them.

4. A bit of Smalltalk folklore: “If 3 + 4 works, everything works.”
We typed 3 + 4 into a window and executed it. It did not work be-
cause the Smalllnteger size message returned the wrong result.

e

75

Some Observations

5. Executing “Circle exampleOne” causes infinite recursion because
the graphics classes were coded incorrectly by Xerox. They had
not noticed this problem because the Xerox implementation of
primitive new: did not comply with the formal specification,
allowing their code to execute.

6. The system is up and working.

The fourth image was brought up on the first attempt.

Some If we analyze the coding errors that we encountered in our various im-
Observations plementations, we find that most fall into the following categories:

* Off-by-one errors

« Failing to return the correct object, or failing to return any object
(leading to off-by-one errors)

¢ Conditional branch reversals

¢ Errors in the specification

Perhaps the most painful part of debugging a virtual machine is finding
the off-by-one errors. These errors typically arise in primitive handling
and in the stack activation records. Certain primitives may fail, and
Smalltalk-80 methods are expected to take over. During the develop-
ment of the virtual machine, it is quite common to damage the object
references on the stack or to misadjust the stack pointer resulting in
off-by-one errors. When returning from a procedure call in many stack
machines (the M68000 is an example), if the processor’s stack has an
extra argument or does not have a return value, the correct return ad-
dress will not be found, and the processor will return to an erroneous
location. The typical result is a system crash. In the Smalltalk-80 virtu-
al machine, the return address (actually the sender field) of the activa-
tion record (an instance of either class MethodContext or class
BlockContext) is always in a known place, and a correct return can al-
ways be made and the machine will definitely not crash. Nonetheless,
the interpreter (or primitives) may have pushed an incorrect result val-
ue or left garbage on the stack. Only later will this type of error mani-
fest itself. These errors can be time-consuming and relatively difficult
to find.

Errors resulting from conditional branch reversals are common, and
are not further discussed here.

76

Implementing the Smalltalk-80 System: The Tektronix Experience

We certainly found our share of errors in the specification of the
Smalltalk-80 virtual machine. This statement should not be taken as an
affront to the Software Concepts Group at Xerox PARC. They were
both developing and documenting two complex software products (the
Smalltalk-80 system itself and the underlying virtual machine), and it
was our job to point out discrepancies. Indeed, they produced an
amazingly well constructed software system, and future implementors
should have fewer problems with their own implementations.

We have programmed very few application programs in the
Smalltalk-80 language. However, we do have one very definite data
point in this area. Our file system (see Chapter 16) was totally devel-
oped in the Smalltalk-80 system and in a relatively short time period.
All debugging was done using the Smalltalk-80 system: we never used
the Pascal or assembly language debugging tools.

A final observation: the routines collectively known as primitives are
about one-third to one-half of the implementation effort. Bear this in
mind when scheduling an implementation.

Conclusions

Our work with the Smalltalk-80 system has shown it to be a robust,
well-engineered piece of software. The initial, albeit incomplete, virtual
machine required six weeks of effort by three software engineers, pri-
marily using a high-level language. This resulted in a slow but useable
system. By monitoring where the virtual machine spent its time, we
were able to construct a system with adequate performance. For first-
time implementors, we heartily recommend a similar approach.

Without question, the Smalltalk-80 system will have a strong impact
on many areas of computer science, including language design, system
architecture, and user interfaces. Perhaps most importantly, the system
and language cause the user to think about problems in new ways.

Acknowledg-
ments

Many people contributed to our Smalltaik-80 effort. Allen Wirfs-Brock
designed and implemented the Pascal-based interpreters and primitives
and the initial assembly language enhancements. Jason Penney
designed and implemented BitBIt, the floating point package, the floppy
disk driver, and the assembly-enhanced interpreters. Joe Eckardt
designed our excellent bitmap display and has made interesting modifi-
cations to the Smalltalk-80 code. Tom Kloos and John Theus designed

77

References

and maintained our M68000 system, as well as the interface to the
mouse, keyboard, and floppy disks. Allen Otis graciously shared his
hardware with us in the early days of the project and made some of the
first measurements of the virtual machine. Larry Katz made many sug-
gestions for the improvement of the book and served as our unofficial
kibitzer during the implementation and provided much food for
thought. We would like to acknowledge the various managers (Jack
Grimes, Don Williams, Dave Heinen, George Rhine, and Sue Grady)
who had the foresight and wisdom to allow us to work on the project.
Glenn Krasner, of Xerox PARC, provided answers to our questions and
provided us with ideas for speeding up our implementation. And, we
would like to thank Adele Goldberg and the Software Concepts Group
of Xerox PARC for including us in the book review and implementation
process. Without them, we would have naught.

References

1. Ingalls, Daniel H. H., “Design Principles Behind Smalltalk”, Byte
vol. 6, no. 8, pp. 286-298, Aug. 1981.

78
Implementing the Smalltalk-80 System: The Tektronix Experience

cep 1S A GOOD \
aymsouC DEBUSGER,

The Smalltalk-80
Implementation at
Hewlett-Packard

Joseph R. Falcone
James R. Stinger*

Computer Research Center
Hewlett-Packard Laboratories
Palo Alto, California

Introduction

This report describes one of the four test sites for the Smalltalk-80 re-
lease process: a personal computing research group at the Computer
Research Center of Hewlett-Packard Laboratories in Palo Alto. The fol-
lowing sections present a history of the work at Hewlett-Packard, an
overview of our implementation, a description of the development envi-
ronment, and some conclusions. A comprehensive analysis of the
Hewlett-Packard implementation is in the companion paper (see Chap-
ter 12).

Smalltalk-80
Project at
Hewlett-
Packard

The Smalltalk project at Hewlett-Packard Laboratories received author-
ization on December 8, 1980. Beginning in November of 1981 the proj-
ect slowed considerably, and the new year found nearly all development
at a halt. The project officially closed on February 22, 1982, though
some independent and academic work on the system continues. The im-

*The views expressed herein are those of the authors, and do not necessarily represent
the position of Hewlett-Packard or any commitment to products or services. Copyright ©
Joseph R. Falcone and James R. Stinger, 1982. All rights reserved.

79

L =

80

The Smalltalk-80 Implementation at Hewlett-Packard

Project History

plementation portion of the project produced nine releases on five dis-
tinct host architectures. Documentation review and background work
took one person-year of our group’s time. We produced the first release
of HP Smalltalk in two months, and subsequent releases followed coin-
ciding with the availability of new Smalltalk images and new host com-
puters. The analysis of these systems consumed another person-year.

This section describes our experience implementing a Smalltalk-80
system according to the specifications distributed during the test pro-
gram. When the project began, neither the documentation nor the soft-
ware was complete, a fact which profoundly influenced the duration,
scope, and direction of the project.

The first three months of the project involved reviewing chapters of the
Smalltalk-80 implementation guide and selecting the first host machine
for the implementation. The first few chapters covered the underlying
philosophy of Smalltalk and set the ground rules for an implementa-
tion. As time passed, the chapters concerned with the specifics of imple-
mentation began to arrive.

The Smalltalk-80 language itself was the specification language used
to describe the implementation. We felt that this hindered our efforts in
two ways. First, it forced us to learn Smalltalk before we had our own
system, and at a time when Xerox possessed the only Smalltalk-80 en-
gines (and even those were incomplete). Second, it introduced some
unwelcome ambiguity into the specification.

Initially we considered the HP 3000 Series 44 for the implementation
host because of its stack architecture and position as the fastest HP
processor then available (approximately 0.5 MIPS). This strategy
seemed appropriate for the Smalltalk-80 virtual machine architecture
as we understood it. However, after studying the matter further, we be-
came aware of several implementation obstacles. We determined that
Smalltalk would perform significantly better on the Series 44 if we put
it directly on the bare machine, instead of layering it on MPE, the HP
3000 operating system. As there is a tight coupling between MPE and
the microcode on the Series 44, the Smalltalk-80 virtual machine code
on the bare Series 44 would have to satisfy the expectations of the mi-
crocode for MPE structures. We also were not sure how Smalltalk
would behave in an environment with separate code and data segments
(enforced by hardware), as is the case on the Series 44. We explored
changing the microcode of the Series 44, but we felt that the task would
take too much effort, especially since none of the members of the group
had microcoding experience. We also considered modifying the
Smalltalk-80 compiler to produce Series 44 machine code, but Xerox ad-
vised that this would be difficult without a working Smalltalk system
on which to do it. Because of these problems, plus time restrictions, we
decided to postpone putting Smalltalk on the HP 3000 Series 44.

81
Smalltalk-80 Project at Hewlett-Packard

Instead, we decided to implement our first Smalltalk-80 system in
Pascal under TOPS-20 on a DECSYSTEM-20 mainframe. Our selection
of Pascal as the implementation language reflected the investigative
nature of the project. We were not sure that a strongly-typed high-level
language could implement the Smalltalk-80 virtual machine as speci-
fied, and it was an interesting exercise to try to do it and find out for
ourselves.

Around the middle of March we felt we had enough information
about the Smalltalk-80 virtual machine to begin writing the interpret-
er. The first test release Smalltalk-80 image also arrived in March. The
DEC-20 implementation proved sufficient and useful for the early
stages when many subtle implementation points were unclear. In par-
ticular, the type and range checking in Pascal exposed many implemen-
tation problems as we progressed. Such experimentation with the
manner of the implementation continued throughout the project.

By the middle of April, the first version of the object memory manag-
er was operating. This version included dynamic memory management
via reference counts. A month later, the interpreter managed to exe-
cute up to the first invocation of a primitive method. We had included a
monitor which allowed us to observe the operation of the system via a
motion picture display (see p. 103 for more details on the development
environment). Two weeks later, on June 5, 1981, we reached a project
milestone: we ran the first Smalltalk-80 test image successfully. This
system on the DEC-20 became the first HP Smalltalk release.

Although the system ran, we did not have graphics capability until
the middle of the summer. This used an HP 2647 terminal connected to
the DEC-20 system, and unfortunately, it took 50 minutes to display a
single Smalltalk screen. We knew from the start that our DEC-20 did
not have a suitable graphics device, so as early as April we began to ex-
plore different approaches. We had already ordered a Lexidata 3400 bit-
mapped graphics system with an HP-IB (IEEE-488) interface for the
proposed HP 3000 Series 44 implementation. Using a National Instru-
ments GPIB11-2 IEEE-488 interface, we could connect the Lexidata to
the VAX-11/780 UNIX system owned by our department. After much
discussion, we adopted this plan. We gained several advantages by
transferring our efforts to VAX UNIX. First, it allowed us to use our
Lexidata system as the graphics device. Second, it took advantage of the
UNIX and C expertise of a team member. Third, and most importantly,
it would give us a version of Smalltalk which could be portable across
UNIX engines.

In the process of moving from the DEC-20 to the VAX, we converted
the entire system from Pascal to C. We developed editor command
scripts for the code conversion to automate the process as much as pos-
sible. Over the course of the next month, as we completed various parts
of the system on the DEC-20, we moved them to the VAX, so that by
June 19 we had transferred the entire system.

82

The Smalltalk-80 Implementation at Hewlett-Packard

The object memory was the first part of the system transferred to
UNIX. Because of its dependence on the memory architecture of the
host machine, the memory manager was almost completely rewritten.
A version of it was running during the first week of May. We eventual-
ly rewrote about half of the original Pascal code as part of the move to
UNIX. The recoding was necessary partly for reasons of efficiency and
partly to take advantage of certain VAX features. In addition to rewrit-
ing the object memory manager, we redesigned the execution monitor,
the memory inspector, and the input/output routines. Most of the
small, frequently-called Pascal procedures became macros. The inter-
preter and primitive routines remained relatively unchanged. We also
integrated the object memory inspector into the execution monitor, so
that one could switch between them to examine objects during
debugging. By the end of the conversion process, the HP Smalltalk-80
system consisted of 7500 lines of C code. Remarkably, it executed a
dozen or so instructions after its first successful compilation on UNIX.

Although some work continued on the DEC-20 Smalltalk-80 system,
particularly with the graphics interface, most of our effort shifted to the
UNIX version. By the end of June we had fast and slow versions of
both the object memory manager and the bytecode interpreter. The fast
versions coded many of the C procedures of the slow versions as macros.
Although the fast versions were indeed faster, they were less useful for
debugging since C debugger breakpoints could only be set on the initia-
tion or completion of a macro, leaving the intermediate steps of the ex-
pansion inaccessible. In addition, the slow version of object memory
performed much error checking which efficiency considerations had
eliminated from the fast version. Once the interpreter stabilized, we
discarded the slow version of it, primarily to simplify version manage-
ment.

A prime reason for moving the Smalltalk system to UNIX was to
take advantage of certain tools, such as the C profiling facility prof. It
showed not only where the system was spending its time, but also how
fast it was running. Using the information gained from the profiles we
were able to improve the performance of the system considerably
through the following techniques:

1. We used structure casts overlaying object memory for contexts
and other fixed-size objects to reduce access time. After setting up
the base address, these casts allow direct access of all elements of
the structure.

2. We expanded small procedures with few invocations in-line.
3. We recoded very small procedures as macros.

4. We cached frequently accessed information in special variables,
including the stack and instruction pointers as absolute addresses,
and the current active context and method as base addresses.

83
Smalltalk-80 Project at Hewlett-Packard

When the second image release arrived in June, instead of abandoning
the first image and focusing our attention on converting the system to
run the new release, we decided to work with the first image until it
was fully functional. We felt the effort would pay off when getting the
system to work on subsequent image releases. Unfortunately, the pur-
pose of the first image, as stated by Xerox, was merely to provide a ve-
hicle for debugging the Smalltalk-80 virtual machine interpreter. Thus,
there was, no documentation available on the user interface for this
first image; neither did we have a complete Smalltalk source listing.
Also, the Lexidata graphics system was not available until the end of
June. To help ease the problem of not having any graphics output be-
fore that time, we modified the scanword primitive to display any text
on the session terminal that would normally appear on the graphics de-
vice. Thus, we saw text output a full two weeks before we saw our first
Smalltalk screen.

By the middle of August, keyboard input was working, including an
appropriate mapping of the keys into the Smalltalk character set and a
keyboard polling scheme that did not cause the system to wait for a
character to be typed if none was in the buffer.

In early September we started to convert the system for the second
image while finishing the implementation for the first image. After
solving a number of very elusive problems, everything except floating
point worked. We were able to do 32 factorial in 14 seconds, 100 factorial
in 90 seconds, and 200 factorial in 360 seconds. At this point our chief
concern was simply getting Smalltalk to work, and the slow operation
of the system was the least of our worries.

By the end of September we had recompiled our first method in the
browser, run the Turtle demo successfully, and managed to get the
snapshot facility working. Early in October we discovered how to de-
clare variables which permitted more sophisticated top-level program-
ming. By the middle of October, the floating point primitives were
working. One annoying problem with testing the system was that the
code which executed after loading a Smalltalk snapshot refreshed all
the windows and required some time-consuming reorganization on en-
try to the first browser pane. To get around this, we constructed work
images which were snapshots of the system taken after these tasks had
concluded. We also generated a version of the system which did not in-
corporate the object memory inspector or the execution monitor. We
used this new sleek version for demonstrations and software develop-
ment, while we continued to debug with the original system. By this
time the original system contained over 10,000 lines of C code. These
systems constituted the second release of HP Smalltalk and the first on
VAX UNIX.

We began to make the changes necessary to run the second image in
the beginning of September. By the first week in October the system
executed up to the first invocation of the inputSemaphore primitive.

84

The Smalltalk-80 Implementation at Hewlett-Packard

This was a major accomplishment since the second image had required
a significant restructuring of the system. There were changes in
input/output handling, primitive invocation, and process management
(for multiple processes). We also discovered that some of the class Oops
in the second image differed from those in the previous version. This
was a recurring problem with each new release and the system would
behave somewhat strangely until we remembered to check the class
Oops. By the end of the first week in November the system was 95%
functional with the second image, and only a few unimplemented prim-
itives remained.

At about this time, Dave Patterson, representing the University of
California at Berkeley, obtained a research license from Xerox enabling
him to study the Smalltalk-80 system in his graduate seminar on com-
puter architecture. Dave requested a copy of our UNIX Smalltalk sys-
tem for his studies, and upon receiving clearance from Xerox to do so,
we delivered the second release HP system to him. We expended very
little effort in porting the system to their VAX; it took them considera-
bly longer to interface their graphics terminal to it. The experiences of
the Berkeley Smalltalk group are discussed in Chapter 11.

By early December the system was fully operational with the second
image. This system featured an early version of the new Smalltalk-80
user interface, and it became the third release of HP Smalltalk. We
provided this release to Berkeley for use in their studies, since it dif-
fered significantly from the previous one.

Also in December, Xerox delivered the third Smalitalk-80 image. The
system required only minor modifications for this new image, so it was
running in a few days. However, there were some minor bugs that
needed attention before it was fully functional. More serious were a
number of problems with the Smalltalk code itself which made it neces-
sary to revise this image release (see p. 96).

At this point we were ready to consider enhancements to the system.
We added a more flexible image handler, a garbage collector, an opti-
mized object memory system, and a method lookup cache. In addition,
we implemented the replaceFrom:to:with:startingAt: method as a primi-
tive to speed up string processing. The third image system with these
modifications constituted the fourth release of a HP Smalltalk-80 sys-
tem. The project closed shortly after this release, and there have been
no significant structural changes to the system since. All project mem-
bers went on to new assignments in the research center.

Cancellation was a major, but not fatal, setback as we undauntedly
reached another milestone on March 13, 1982 when the system execut-
ed the testStandardTests benchmark without error. Nagging object
memory allocator problems had thwarted previous attempts to run the
complete benchmark for some time. Unfortunately, as the project had
been closed for nearly a month, we could only spare a few moments

J—

85
Overview of the System

here and there to work on the system. Debugging was usually done in
pairs, and we found it particularly difficult to coordinate our schedules
now that we were all working on different projects. But we were deter-
mined to attain full functionality, and, given our limitations, it was
quite an achievement.

Two weeks later, the fourth Smalltalk-80 image arrived from Xerox.
Again, the modifications for this image were minor and took only a few
days to make. Enhancements to this version of the HP Smalltalk-80
system include an improved object memory inspector, an increase in
the speed of drawing lines by implementing the drawlLoopX:Y: primitive,
and a new hard-copy facility for the Printronix line printer and the
Versatec electrostatic plotter. The system also includes a mechanism
for displaying Smalltalk screens on HP graphics terminals, at about
three minutes per image—an improvement over the previous 50 min-
utes in the first release.

On April 28, 1982 we released our fifth version of the Smalltalk-80
system, which we call HP Labs Smalltalk-84 for historical reasons re-
lated to our internal release numbering. This version was the first
made available for use by staff at-Hewlett-Packard Laboratories Com-
puter Research Center.

In parallel with the documentation and analysis of the system, we
made a number of modifications to the fifth release. Many of these
modifications were a direct result of having to explain our implementa-
tion in this and other technical reports. Documenting the system in de-
tail exposed many aspects that we had overloocked in our rush for
implementation. In addition, the battery of tests used to generate the
statistics in the companion report suggested many subtle ways to im-
prove performance. In tests this revised version of HP Smalltalk-84 exe-
cutes from 33% to 500% faster than our previous systems. We released
this sixth version on September 13, 1982.

Overview of
the System

Smalltalk is similar to other language implementations at Xerox Palo
Alto Research Center in that it has its own virtual machine. The
Smalltalk-80 virtual machine consists of a byte-oriented instruction set
or bytecodes together with an associated support environment. Porting
the Smalltalk-80 system to a new machine involves implementing a
Smalltalk-80 virtual machine emulator to execute bytecodes and man-
age resources such as memory, time, files, and graphics. The distribu-
tion format for the Smalltalk-80 system is an image or snapshot,
somewhat analogous to an APL workspace.

86

The Smalltalk-80 Implementation at Hewlett-Packard

Interpreter

The virtual machine is in three parts: the bytecode interpreter, the
primitives, and the object memory. The interpreter dispatches and exe-
cutes the bytecodes. The primitives are the gateway through which the
system makes requests to the underlying resource managers. The mem-
ory manager maintains a dynamic object store for the system.

The interpreter is the core of the Smalltalk-80 virtual machine emula-
tor. The Smalltalk-80 virtual machine is an abstract architecture
designed to execute Smalltalk and is similar to the P-machine of Pas-
cal. It is a stack machine with a byte-oriented instruction set encoded
chiefly to conserve space. Its most unusual aspect is the message send
facility, roughly analogous to procedure call in conventional architec-
tures. There are no computational instructions as such because message
sends perform their function, with special cases to expedite the more
popular ones (such as arithmetic and logical operations). The implemen-
tations of most bytecodes are only a few lines of code, but certain types
of message sends require many lines of code for selector lookup and
context activation, since the worst case amounts to a late-binding proce-
dure call.

Our first implementation of the Smalltalk-80 virtual machine inter-
preter was a literal translation of the specification we were reviewing:
each Smalltalk-80 method in the specification became a Pascal proce-
dure in the DEC-20 version. When we moved the system to UNIX, we
converted many of these procedures into C parameterized macros and
consolidated several sets of interrelated procedures. These changes
helped to avoid the substantial overhead of procedure invocation for
most simple operations. In fact, often the consolidated code took less
time than the original with the embedded procedure call. The parame-
terized macro facility gave us the best of both worlds— we moved many
short procedures into in-line code without sacrificing the documentation
value of the calling structure.

We structured the interpreter as a large switch statement encased in
an instruction fetch loop. Early on we made several significant perfor-
mance enhancements:

1. We moved most of the simple bytecode emulation into the switch
cases to eliminate procedure call overhead (which is considerable
on some hosts).

2. We cached Oops and addresses of the active context and method to
speed up the frequent bytecode fetch and stack push/pop opera-
tions.

3. We also cached the Smalltalk-80 virtual machine instruction
pointer (IP) and stack pointer (SP) in the form of C address point-
ers, instead of representing them as integer field offsets.

87

Overview of the System

Since the cached IP and SP values change during execution, occasional-
ly it is necessary to synchronize them with their values in object memo-
ry. Some of these occasions are:

1. Change of current active context.

2, Access of the current active context (e.g., instVarAt: and
instVarAt:put: primitives).

3. Certain object memory management operations (e.g., compaction).

The most complex operation in the interpreter is message selector look-
up. A message send enters the interpreter along with the class of its re-
ceiver and a selector. The current class below is initially the class of the
receiver of the message. The algorithm implementing class behavior in-
heritance is as follows:

1. Search for the selector in the message dictionary of the current
class.

2. If the selector is not found and the superclass of the current class
is not nil, then set the current class to its superclass and go to (1).

3. If the selector is not found or the search reaches the end of super-
class chain, then give a message not understood error.

Unfortunately, even though message dictionary access is through a
hash function, the inevitability of selector collisions and the attractive-
ness of behavior inheritance cause a fair amount of both linear diction-
ary searching and superclass chain traversal. We added a simple meth-
od cache which eliminated much of the overhead, especially during
repetitive tasks. The clumping of both selector and class values required
a hash scheme with unusual characteristics. The cache has 509 ele-
ments and the hash function is

((selector bitShift: -1) bitXor: (class bitShift: -1) \\ 509) bitShift: 2

Using a large prime for the cache size distributes hashes more evenly
and gives performance comparable to caches four times the size. Unfor-
tunately, any time the system changes the object pointer of a compiled
method, selector, or class, Smalltalk invalidates the entire cache. A
more sophisticated approach to cache management would be a welcome
addition.

We have recently modified the interpreter to transfer the receiver
and arguments using the fast block move instruction on the VAX. This
has significantly reduced the overhead of context initialization.

88

The Smalltalk-80 Implementation at Hewlett-Packard

Primitives

The system primitives are the roots of the Smalltalk-80 virtual ma-
chine. One can view the primitives as a collection of system calls, a li-
brary of procedures, or a set of very important methods. Primitives
exist for two reasons: Smalltalk cannot implement all system functions
(e.g., I/0 and basic arithmetic), and more important, Smalltalk code of-
ten cannot perform well enough for certain special functions (e.g.,
graphics).

We implemented most of the non-arithmetic primitives with UNIX
system subroutines, and added additional software layers to handle er-
ror conditions, to interface with other software and hardware compo-
nents, and/or to simulate particularly unusual operations. In all, a
mass of over 100 C procedures implements the more than 80 primitives
included in our system.

While it is not possible to code some primitive operations in
Smalitalk, not all of them have to be implemented underneath the sys-
tem. Indeed, some primitives begin life as Smalltalk methods and enter
native code after careful evaluation of cost and benefit. As a result,
some primitives remain as optional native implementation candidates,
with backup Smalitalk code in place to execute if the associated primi-
tive routine is absent or fails. An example is the set of primitives which
handle arbitrary precision arithmetic, all of which have Smalltalk code
to execute if the primitive invocation balks.

The term primitive does not refer to the complexity of the routine,
though many are simple, straightforward functions. Rather, it describes
the level of implementation—the lowest level possible. Our decision to
develop the system in portable high-level languages was in direct con-
flict with this notion. However, since we could not modify the microcode
on our VAX, we had no alternative for the prototype system and the
performance of the primitives suffered accordingly. We feel that
microcoded Smalltalk-80 virtual machine support could have improved
performance by an order of magnitude over our existing system.

One of the more unwieldy concepts in the implementation was that
of primitive failure: how and where to look for it, and what to do about
it. We implemented most primitives with relatively strict runtime
checking of the classes and value ranges of receivers, arguments and
their fields. The current system probably has too many checks for valid
receivers and arguments, but in some cases these were vitally necessary
and helped us considerably during the debugging phase. In particular,
the copyBits primitive contains a number of such checks. This checking
may be stricter than absolutely necessary given the way the
Smalltalk-80 code actually uses the primitives. However, we did not feel
the specification of the Smalltalk-80 virtual machine was precise
enough to rule out the need for these checks.

The addition of primitives for string processing
(replaceFrom:to:with:startingAt:) and for line drawing (drawlLoopX:Y:) re-

89

Overview of the System

sulted in impressive performance gains for work in those domains.
However, we did not implement the arbitrary precision arithmetic and
the file system primitives. Currently the arbitrary precision arithmetic
primitives default to backup Smalltalk code which is relatively slow.
This is not a serious problem since most Smalltalk system arithmetic
stays within the signed 15-bit range of immediate small integer objects.
Unfortunately, we will have to redesign most of the Smalltalk file sup-
port code to incorporate a reasonable interface for sophisticated hierar-
chical file systems (like UNIX). The file interface supported by
Smalltalk is very low level, using too much information about physical
disc operation. We do not consider this approach appropriate even for
implementations without an underlying file system.

Currently, we use a Lexidata 3400 graphics system connected to a
VAX UNIBUS via HP-IB. The physical pointing device, a
Summagraphics Bitpad One with a four-button puck, operates through
the Lexidata graphics processor. The routines for graphics device inter-
action shield the Smalltalk-80 system from the details of these lower
levels. The Lexidata display memory is maintained by tracking the
class Bitmap object associated with the current display form. Every
time the bit map of the current display form changes, the graphics driv-
er sends a copy of the altered area to the Lexidata. Since the at:put:
primitive can potentially change the bit map, it recognizes when the
destination is the display bit map and invokes the graphics driver.

The graphics system required much work to get to its present condi-
tion. We began with a 1280 x 1024 display optimized for white on black
graphics and a track ball with illuminated throw switches. An HP-IB
interface was designed especially for the Lexidata under a special con-
tract and this was our pathway into the host machine. As time passed,
pieces of the system fell into place. We developed microcode to use the
bit pad in place of the track ball. The bit plane logic was reversed to
display a white dot when the corresponding bit is off for black on white
graphics. Other parameters and microcode in the graphics processor
were modified to enhance black on white graphics, but there were lim-
its to this. Regardless of mode, we could not use the system at its maxi-
mum resolution. We compromised for improved readability by using the
graphics processor to double the pixels in both the X and Y dimensions
so that a 640 x 480 Smalltalk screen neatly occupies the display. We
even have room at the bottom of the display for system messages. In
short, this experience was a baptism of fire in computer graphics.

We did try to optimize copyBits by implementing the bit copying op-
erations in VAX assembly language. In this experimental version of
copyBits we could copy an entire 640 x 480 pixel bit map in 0.08 second
(about 10 times faster than the C routine). Unfortunately, the VAX bit
operations work in the opposite direction of that needed for bit map
manipulation. Our priorities prohibited modifying all of the bit map

90

The Smalltalk-80 Implementation at Hewlett-Packard

management code for reverse bit ordering, which now included micro-
code in the Lexidata graphics processor.

The current implementation of copyBits makes little use of the ex-
tended functionality of the graphics processor, such as area fill or poly-
gon moves. The Lexidata system does manage and update the cursor as
it tracks the mouse. In addition, having a screen bit map that is sepa-
rate from CPU memory permits us to continuously display its contents
without regard to processor operation. This is not the case with some
integrated graphics configurations where display refresh consumes a
significant percentage of CPU bandwidth.

The buttons on our mouse conform to the Smalltalk-80 color scheme:
red on left, yellow in middle, blue on right. Because we had four but-
tons, we could attach more functions to our mouse. The fourth one, the
green or HP button, acts as a shift key for the other three buttons. The
following extended functions are available on our system:

1. green + red Take a snapshot of the system.
2. green + yellow Stop the system.

3. green + blue Print the screen.

The HP system offers two flavors of snapshot. Besides the standard
Smalltalk snapshot, we implemented a flash freeze snapshot which
saves the image without executing any Smalltalk code. This avoids the
rather tedious motions of the standard mechanism, including restora-
tion of the display screen. The user may select this alternative snapshot
through a mouse function or a monitor command. Since this facility
permits snapshots at arbitrary bytecode boundaries, we must preserve
more state information than is strictly necessary for saving an image
via the Smalltalk mechanism. For example, the keyboard input buffer
would not need to be kept if we had only the Smalltalk facility. The
state information falls into three categories:

Monitor State Bytecode count and current bytecode. Although this infor-
mation is not needed to resume execution, it is nonetheless
useful, especially during debugging. When a system re-
sumes we always know the exact bytecode where it left off.

Cached Objects Oops of the current djsplay form, the current cursor bit
map, the current input semaphore, the clock semaphore,
and any new process waiting to be run. In addition, we
save the Oops of all semaphores that have been signaled
due to the occurrence of an input event. The Oop of the
current active context is saved by storing it in the active
context field of the current active process prior to taking a
snapshot; similarly the cached stack pointer and cached in-

Object 1

Wemory

91
Overview of the System

struction pointer are saved by storing their current values
in the current active context.

1/0 State Cursor position, mouse position, last mouse buttons
pressed, current sample interval, input polling interval, the
time at which to signal the clock semaphore, the keyboard
input buffer, and various indices and flags including the
state of the link between the mouse and the cursor (linked
or unlinked).

The system can print screen images on Printronix line printers,
Versatec electrostatic plotters, and Hewlett-Packard graphics terminals
in a variety of resolutions and magnifications. Anytime during a session
the user may request a copy of the screen via the mouse buttons or
monitor. The screen image is sent to a general bit map spooler.

We process external events and manage the input word buffer on a
Smalltalk-80 virtual machine bytecode-synchronous basis. The system
recognizes external events by (just before executing the next bytecode)
explicitly polling the devices to determine whether they have changed
state. One UNIX process implements all Smalltalk processes as well as
the switching mechanism. The Smalltalk-80 system does not explicitly
use the UNIX interrupt mechanism to support multiple processes. The
system checks certain I/0 quenes after executing a fixed number of
bytecodes since the last inspection. The user sets this inspection inter-
val at system initialization.

The object memory itself is a simulator underneath the Smalltalk-80
virtual machine emulator, implementing a small-object dynamic stor-
age manager within the large virtual memory of our host machines. As
mentioned before, there are two versions of our memory system. The
slow or protected version checks field index bounds and operand classes
at the interpreter/object memory interface. The fast version does no
checking and consists mainly of C macros. The protected version was
very useful for detecting memory problems close to their source.

Access to objects in Smalltalk is via object pointers (Oops) which can
be either signed 15-bit immediate integers (small integer objects) or
15-bit indexes into tables of state entries and field addresses (indirect
object pointers). The 15-bit range of the object pointer (the other bit de-
cides between small integer and indirect pointer objects) limits the
number of indirect objects in the system to 32767. This limit was not a
factor in our research.

The final Smalltalk-80 image is by no means small as it contains
over 450 kilobytes of objects and requires at least half a megabyte with
its object table. The suggested Xerox implementation uses a 20 bit ad-
dress into the object space, but our implementation uses 32-bit virtual
addresses. This required a reorganization of the object table into sepa-

92
The Smalltalk-80 Implementation at Hewlett-Packard

rate tables for the state entries and the field addresses, but the results
were favorable.

Table 6.1 Hewlett-Packard Smalltalk-84 Image Format

Word Entry
0-1 number of entries in the object table
2-3 the length of the object space in 16-bit words
4 system state object Oop
5 offset to the first entry in the table (the first offset)
6 object state header of the first active entry in the object
table
7 length in 16-bit words of the first active entry in the ob-
ject table
8 Oop of the Class of the first active entry in the object ta-
ble
9 offset to the second entry in the table (the second offset)
10-12 the second active entry in the object table
13 offset to the next entry in the table (the third offset)
14-end of entries the remainder of the object table entries |
followed by the fields of the objects in the table 2

Because of host machine differences and efficiency considerations, the
HP Smalltalk-80 system uses the image format in Table 6.1 which dif-
fers from the standard interchange format. The HP format uses a spe-
cial coding scheme to indicate free entries in the object table, whereas
the interchange format does not eliminate the space wasted by these
entries. This format is also space efficient and easy to load and save.
The first 8 bytes contain the image size parameters as 32-bit unsigned
integers. The number of object table entries is followed by the number
of 16-bit words in the object fields space. Next, is the Oop of the system
state object, used to restore Smalltalk and the support environment to
their exact condition before a snapshot.

The object table follows. It is not stored as an exact image of the sys-
tem object table (that would waste space). Each object table entry in the
image is preceded by a 16-bit offset from which the next table entry lo-
cation is derived. For example: if the first active Oops in the system
were 12, 16, 18, 26, and 56, then the offset values (in brackets) would
be:

[12] > 12 + [4] > 16 + [2] > 18 + [8] > 26 + [30] > 56

The first of these offsets determines the location of the first used object
table entry. Thereafter the offsets are used to skip the unused entries
in between the active ones.

93
Overview of the System

The field pointer portion of the object table entry in memory is ini-
tialized by cumulatively adding the object lengths to the base address of
the memory allocated for the object space. Therefore, each object table
entry in the snapshot consumes 8 bytes: 2 for the offset, 2 for the head-
er, 2 for the length, and 2 for the class. After the object table entries are
read in, a single mass read brings the object field space into memory.

Saving an image is similar, except that the object field space must be
written on an object-by-object basis, since we cannot assume contiguous
allocation on a used system.

We convert the image from the standard interchange format into the
HP format by the following transformations:

1. Convert the interchange format state entries into the HP layout.

2. Move the class and length from the fields of each object into the
object table entry.

3. Swap the bytes of all non-byte objects (our hosts use low-
byte/high-byte ordering rather than the high/low of the image in-
terchange format).

4. Convert objects of class Float in the image from IEEE format to
VAX format. The ranges are slightly different so the conversion
program indicates when it encounters an IEEE floating point
number which has no VAX format correspondent.

5. Create the special HP system state objects in which the snapshot
process saves relevant details so that the system may continue lat-
er from the same state.

The conversion process takes less than a minute and includes a consis-
tency check on the interchange format image.

The implementation of our object memory system differs from that
in the Smalltalk-80 virtual machine specification. The system main-
tains two tables of object information: the first table contains the 16-bit
state entries while the second table has the length and class Oops plus
the pointer to the object fields for a size of 64-bits. Since the size of the
entries in each table is a power of two, access is fairly efficient. Previ-
ous single table versions used either 96- or 80-bit entries which re-
quired multiplies by three or five for indexing.

Each state entry contains an 8-bit reference count (used fully), and 6
flag bits for the following conditions:

1. Reference-count overflow and exemption.
2. Object is permanent.

3. Object table entry is available.

94
The Smalltalk-80 Implementation at Hewlett-Packard

4. Object contains pointers.
5. Byte object is odd length.

6. Object has a mark (from garbage collector).

The two remaining bits are for future enhancements, such as a code bit
for compiled method objects. We moved the length and class Oops from
the fields of the object into this table for more efficient access. This
change significantly improved performance for the protected version of
object memory, and also reduced the load on the dynamic memory allo-
cator by two words per request, but in doing so increased static alloca-
tion by 128 kilobytes. With an object table that is three-quarters full,
the actual waste from this is 32 kilobytes, which is negligible in a large
virtual memory system. The length entry contains the actual number of
words allocated to the object fields (not the same plus two for length
and class, as suggested). The pointer to the fields is a 32-bit virtual ad-
dress instead of a 20-bit quantity divided into a 16-bit offset and a 4-bit
segment number.

Early in the implementation, we defined the interface through which
the interpreter and primitives communicate with the object memeory.
The strict adherence to this interface permitted an easy transition from
the DEC-20 to the VAX even though their memory systems differed
considerably. The interface consists of:

. Instantiate pointer, word, and byte objects.

. Load and store pointer, word, byte and float values.
. Get object length and class.

. Test and convert small integer and pointer objects.
. Decrement and increment reference counts.

. Find first and next instance of a class.

Swap object pointers.

RS - S N O

Query memory allocator state.

The memory system initializes all objects upon instantiation. Word and
byte objects need to have their fields set to zero, while pointer objects
require nil values or 2’s, which most architectures cannot do efficiently.
The VAX has a block move instruction which, combined with a
predefined array of nil values, is an efficient solution to this problem.
The cost of using standard memory accesses to store nil in every field is
excessive (since the average size is about 18 words).

Reference-count activity dominates the time spent in the memory
system. We implemented a straightforward strategy and attempted to
reduce the amount of checking necessary to determine whether an ob-

95

Overview of the System

ject actually must be reference counted. For example, the shortest path
for the count decrement operation is

check if small integer bit of Oop is set (is object a small integer?).
ifFalse:[fetch the header of the object pointed to by the Oop.
check if exempt flag is set (is object free, permanent or overflow?).
ifFalse:[decrement reference count.
check if reference count > zero.
ifFalse: enter deallocation routine.]]

The sequence for the count increment operation is

check if small integer bit of Oop is set (is object a small integer?).
ifFalse:[fetch the header of the object pointed to by the Oop.
check if exempt flag is set (is object free, permanent or overflow?).
ifFalse:[increment reference count.
check if reference count > zero.
(note: the byte arithmetic wraps around to zero on overflow.)
ifFalse: set exempt flag in header to overflow]]

Measurements of our Smalltalk-80 object memory and similar dynamic
memory systems indicate that count maintenance consumes from 20%
to 40% of execution time. The implementors of the M3L machine!' dem-
onstrated the performance advantages of special reference-count hard-
ware. Reference-count maintenance is expensive because it congests
data paths with extra traffic and requires ALU cycles during every
count function. For example, a store pointer operation includes both a
count down on the Oop at the destination and a count up on the source
Oop. The cost of store pointer was the motivation behind its
reimplementation in assembly language.

The availability of virtual memory on our host machine was an ad-
vantage in the early phases of design. Makeshift memory systems could
run even while wasting a lot of space or thrashing over lists. Thus a
gradual evolution of object memory implementations progressed until
the better ones emerged. The current version implements:

1. A set of special allocation pools.
2. A mechanism for coalescing blocks on the general free list.

3. A marking garbage collector.

The special allocation pools were the most significant addition to the
system, and they differ considerably from the free lists described in the
specification. There are four pools in the system: one for each of the
three most popular sizes of pointer objects and a general pool for the
rest. The three special pools take advantage of the allocation frequency
of small contexts, points, and large contexts. Each special pool is a

96

The Smalltalk-80 Implementation at Hewlett-Packard

Implementation
Issues

linked-list of fixed-length pieces of memory allocated at system initial-
ization and permanently residing in that pool. Only transactions requir-
ing pointer fields of the three sizes can use the special pools so there is
no fragmentation in the pool. In our standard configuration, 16
kilobytes of memory in the special pools satisfies over 97% of all instan-
tiation requests.

The transaction traffic of the memory system is very different from
that of most programming environments. The system allocates,
accesses, and just as quickly deallocates megawords of memory in
chunks typically less than 20 words. Since the special pools handle
nearly all memory traffic, we have fragmentation effects from only 3%
of allocations. Our memory allocator continuously coalesces and recy-
cles this space on the general free list, thus preventing most fragmenta-
tion problems. In view of these facts, we feel that the actual long term
fragmentation is not serious enough to warrant dynamic compaction.
Compaction does happen whenever we save and reload an image. This
scheme suits our view of personal computer usage patterns well—Iload-
ing an image, working for a while, then saving the results—and since it
takes less than 15 seconds to save and reload an image, we see little ad-
vantage to having a separate compactor.

Cycles of inaccessible objects occur with reference-counting memory
management schemes. Sadly, some of the occasions for cycle creation
involve fundamental concepts in the language, such as sending a mes-
sage with a block as an argument (where the pointer to the block con-
text is in the temporary variable area of the home context). Periodically
we run an auxiliary garbage collector to sweep the object table of all
derelict objects caught in cycles. The cost of such a collector in CPU
time is high, so it is advantageous to avoid running it. Because contexts
are most frequently involved in these cycles, the system invokes the col-
lector when either of the two special allocation pools devoted to con-
texts becomes empty. By setting the sizes of these pools at system boot
we can vary garbage collection frequency. The collector also runs when-
ever the object table becomes full, but this is a far less frequent occur-
rence. We found it necessary to lock out the garbage collector whenever
the reference counts do not accurately reflect the condition of object
memory. The current system requires collector lock-out in only a hand-
ful of situations.

The Smalltalk-80 distribution process proceeded through five test re-
leases. Each new release posed a variety of problems which we usually
resolved after a month or so of changes and corrections. Smalitalk
proved to be an incredibly robust system-—so robust that it could con-
tinue to run after bugs had corrupted major sections of data or code.
For example, in implementing the primitive methods sometimes we did
not push a result on the stack before returning. In spite of this, the sys-

97
Overview of the System

tem was able to execute many bytecodes before giving any indication
that something had gone wrong. Problems such as this were often diffi-
cult to diagnose, even with the sophisticated debugging tools at our dis-
posal.

We list here some of the problems and issues faced in implementing
the Smalltalk-80 system in the hope that future implementors can ben-
efit from our experience. These problems are in six categories: arithme-
tic, primitive methods, input/output, object memory, programming, and
general problems.

[] Arithmetic Problems Many of the problems in the arithmetic area
were with floating point numbers. One problem was that we were not
certain which floating point representation was used in the first test
image. In particular, floating point objects in the first image were three
words or 48-bits, which seemed to contradict the claim that the
Smalltalk-80 system used IEEE standard 32-bit single precision format.
As it turned out, it was IEEE format and the system simply ignored the
third word. But this was bad news—the VAX did not have IEEE stan-
dard floating point arithmetic at that time. We had to convert all ob-
jects of class Float to VAX floating point format and hope that none
would be outside the VAX range. Fortunately, no Smalltalk floating
point numbers have exceeded this limit. And after we went through all
of this, DEC introduced IEEE floating point support for the VAX.

In another situation, the routine that extracted the fields of floating
point numbers treated the fields as small integers (-16384 to 16383),
when in fact they have a range of zero to 65535. This problem occurred
in several places throughout the system and was the source of many
bugs. As a result of these complications, we were well into converting
the system for the second image before the floating point primitives
went into operation.

Another problem involved the initialization of the fields of
LargePositivelnteger objects. When we first installed the special alloca-
tion pools in the memory system, we set the fields of all pool objects to
nil upon deallocation. The only requirement to request memory from a
special pool was to be the appropriate size-—there was no pointer object
check. Occasionally a large integer happened to be one of the sizes han-
dled by the special pools, and thus had nils in its fields. If one
performed bit operations such as bitOr: on a large integer, these nil val-
ues could affect the result. Indeed, we found that when one added two
large positive integers of certain values there were extraneous 2’s in
some of the lower digits of the result. The solution was to correct the al-
locator to ensure that it only initialized pointer objects with nils.

A third arithmetic problem had to do with the // operation. It was
not clear from the original documentation for the first image just what
the definition of // was. As we began to use the system, occasionally we

98
The Smalltalk-80 Implementation at Hewlett-Packard

would get a mysterious error 'Subscript out of bounds:” which did not
seem to have any relation to what we were doing. We had spent quite
some time searching for the cause when we discovered that the system
was using the // operation to compute the index for a table, and be-
cause it truncated in the wrong direction, it often produced a negative
index. As the corresponding C operator differed from the Smalltalk def-
inition, we had some difficulty implementing the // operation correctly.
Because of this confusion, the specification now includes both variants
of the operation.

[] Problems with Primitive Methods There was confusion over the
extent of error checking to include in the implementation of primitive
methods. Because there were no specific guidelines in the documenta-
tion, we decided to implement comprehensive checking. We checked the
class and range of the receiver and the arguments and their fields.
However, we soon encountered problems with class checking. In some
cases the receiver or argument need only belong to a specified class or
any subclass thereof. The class check in this situation could be time
consuming since it involves a traversal of the superclass chain. Rather
than endure this overhead, we removed the class check in these cases.
In general, we feel that this checking gave us a useful safety net to pro-
tect the system from corrupted code and other problems, but it is not
clear that such checking would be desirable in a production system.

During testing of the system with the slow version of object memory,
we encountered many load word and store word range errors in the
copyBits primitive. Some of these were caused by insufficient clipping of
the source and destination forms. We eliminated them by adding more
checks for clipping based on the sizes and relative positions of the
source and destination forms. Other range errors stemmed from the
way the BitBlt algorithm handled the transition from one row of the bit
map to the next. When doing a preload on the last word of a bit map
row, the next word loaded in computing the destination word comes
from the next bit map row instead of the current row. This did no harm
except when the last word of the last bit map row was at the end of the
bit map. If it was, the next load word generated an error. We fixed this
by checking whether the second load word goes past the end of the bit
map. If it reaches the end of the bit map, we substitute zero for the sec-
ond load word value. This is not the most efficient solution to the prob-
lem, but it preserved our investment in the copyBits primitive (which
no one wanted to rewrite).

Another problem with copyBits on the third test image involved the
coordinate arguments. In some instances, these coordinates contained
floating point numbers instead of small integers. We had to check for
floating point arguments in the makePoint routine. When the argu-
ments to makePoint were instances of class Float, the primitive convert-

99
Overview of the System

ed them to integers before making them into a coordinate point. The
final image does not suffer from this problem.

There was a rather simple problem with the swapPointersOf primi-
tive. An early implementation swapped the reference counts along with
everything else. Since the reference counts must follow the Oop and not
the table entry, the system behaved strangely until we realized what
had happened and repaired the primitive.

] Input/Output Problems We had many problems with keyboard in-
put and character mapping. With each new Smalltalk-80 test release,
we modified our keyhoard input routine to accept numeric ASCII codes
instead of characters in order to determine the appropriate mapping.
This process became easier with each new release and particularly after
the second release which was the first to use the ASCII character set.

With the second release came more problems as we had to find a way
to input control key codes for those not in the ASCII character set (e.g.,
control-0 to control-9). Since the Smalltalk I/0 code could handle either
ASCII-encoded or unencoded keyboards, we designated an escape se-
quence to input unencoded control characters (control-1 followed by the
character). In the final release, the Smalltalk methods for keyboard in-
put interfered with this scheme so we rewrote most of them.

We found it difficult to implement the polling scheme for keyboard
input on the first test image. Often the last character in the buffer
would not appear on the screen until the user typed another character
and it was interminably slow. Finally, after rewriting the keyboard in-
put primitives and maintaining better control of the buffer, the system
improved, although it was still slow. With the second test image, key-
board input was to be interrupt-driven and synchronized with sema-
phores. Initially we simulated this behavior with another polling
scheme. The system checks for keystrokes every n bytecodes, and if any
are waiting, it places the key codes in an input buffer and signals the
input semaphore. Recently we developed a way to eliminate polling for
text input using an interrupt scheme based on UNIX intrinsics. This
has improved overall system performance by eliminating the terminal
buffer count check which was a part of polling.

Our Smalltalk system manages the mouse in a similar manner.
Whenever the system polls the keyboard, it also checks the mouse posi-
tion and mouse buttons for activity since the last poll. If there are any
changes, the system generates appropriate event words, places them in
the input buffer, and then signals the input semaphore. Various
Smalltalk routines also query mouse position directly, posing some
question about the need for our system code to do it as well. A series of
experiments suggested that the system was more responsive with mouse
position polling in both places.

100
The Smalltalk-80 Implementation at Hewlett-Packard

[] Object Memory Problems The problems with the object memory
manager centered around allocation, reference count management, and
garbage collection. At one point there was infrequent trashing of some
of the fields of method and block contexts. Somehow the memory sys-
tem was allocating objects that were overlapping contexts. While we
never discovered the source of the problem, we solved it for a while by
isolating contexts into special allocation pools. The problem reappeared
however, when running the interpreter on the final image. Again we
redesigned the memory allocator, this time using linked lists for the
pools instead of a table of pointers. We have had no problems with ob-
ject memory since.

During testing of the interpreter on the second image we noticed
that the memory system was allocating many small contexts while
deallocating only a few through the reference counting mechanism. We
later discovered that when performing sends we neglected to nil out the
argument fields of the sender after transferring the arguments. This
enabled cycles to develop involving block arguments and contexts. The
correct transfer mechanism eliminated over 90% of these cycles.

Shortly after investigating these cycles in object memory, we decided
to add a marking garbage collector to our system. At the time, our pri-
mary motivation was to reduce the size of the special pools from which
the system allocated contexts. In the process of implementing the gar-
bage collector we had to determine the root objects from which marking
should proceed. We start from all cached object pointers, plus the Oop
of the Smalltalk object. We were then faced with the problem of deciding
when to activate the collector. Activation would certainly be tied to
some sort of low watermark in the allocator, but should the collector
proceed directly from there or be postponed to a safe period or a
bytecode boundary? There are times when the garbage collector could
do much damage, so it is vital to ensure that it cannot run during these
periods. For example, sometimes the system temporarily increases the
reference count of an object to ensure that it remains through a critical
operation. During the interval between the artificial increment and dec-
rement operations the reference count is inconsistent, and intervention
by the collector would discard such an artificially protected object. This
is because the collector chases pointers to determine the number of ref-
erences to an object instead of relying on the reference count in the
state header. To prevent intrusion during such operations, we devised
critical section locks which disable and re-enable the collector. In addi-
tion, we make permanent (via a permanent bit in our object state head-
er) those objects that are not to go away under any circumstances (e.g.,
true).

Once our garbage collector was working, we reduced the small con-
text pool size from 8192 to 256 contexts, a saving of nearly 300
kilobytes of memory. Our investigations have shown that garbage col-
lections are relatively infrequent when browsing or text editing, but

101
Overview of the System

that at least one occurs when compiling or decompiling a method,
reclaiming as many as 500 objects.

] Programming Problems As with any programming project involv-
ing more than one person, we found ourselves confronted with problems
of version management, communication among the members of the
team, and implications of changes made to the system. We found UNIX
tools to be very useful for managing these situations. In most respects,
the project was a model of modern software management. All of us had
a background of software projects and we placed a heavy emphasis on
software tools and techniques. In fact, we considered managing the soft-
ware effectively to be almost as important as implementing Smalltalk
itself. Some of the management tools are described on p. 103.

We had a resource problem in having to share our host machines
with other projects, some of which involved signal processing. There
were times when the load on the system was so heavy that it was hope-
less to attempt debugging the system. For demonstrations we would get
the machine all to ourselves for acceptable performance.

Global variables, of which there were many, gave us the usual prob-
lems with proper initialization and usage. We tried to localize state
variables as much as possible to only those modules that used them. In
spite of these precautions, global variables were the source of several
bugs in the system.

Macros were also a source of problems in coding the system. Since we
tried to optimize code as much as possible by using macros, we some-
times nested them several levels deep. Upon expansion, these macros
could get quite large—nearly 900 characters for the push macro, for ex-
ample. Increasing the size of these macros could produce complaints
from the C preprocessor in some situations. We also had to parenthesize
macro arguments to ensure the proper order of expansion. A significant
difference between macros and procedures is that macro arguments are
evaluated at each appearance in the definition instead of only once on
procedure entry. For example, a macro may use an argument in a num-
ber of different places in the definition. If we pass it a function which
always returns the same value, the macro will operate properly. How-
ever, if we pass a function like popStack, then at each appearance of
the function in the definition it will return a different result (plus there
will be too many stack pops). We used temporary variables within mac-
ro definitions to ensure that arguments are evaluated only once.

We encountered an optimization problem with printing hard copy of
the Smalltalk screen. The routine for dumping the screen to the printer
worked fine until we ran the system through the C code optimizer. Af-
ter that, the hard copy routine would print only garbage. Later we dis-
covered that the c2 code optimizer for the VAX produced incorrect code
for certain bit operations, and unless it has been changed, it still has
this bug.

102

The Smalltalk-80 Implementation at Hewlett-Packard

[] General Problems The biggest general problem was with the in-
complete and sometimes erroneous details of the implementation given
in the book. The agreement with Xerox made it our task to debug the
documentation and image test releases. As we read through the chap-
ters, we found we had many questions and comments. For example, we
had difficulty getting nested blocks to work. Our system was not prop-
erly initializing the instruction pointer for a nested block. The initial
instruction pointer was coming from the home context instead of the
active context as it should have been. The documentation did not make
this detail clear, and we wasted some time tracking it down.

Another problem was the result of a similar oversight. In early Sep-
tember, many of the methods in the first image were operational, but
some still were not working and others gave 'message not understood’
errors. There was no pattern to the failures and the cause seemed al-
most impossible to isolate. We had just about given up when, in a mar-
athon debugging session, we discovered that the Smalltalk compiler was
using byte stores to set the 16-bit header word of new compiled method
objects. Because byte ordering on our host machines is the opposite of
that on Xerox systems, a method header constructed in this fashion had
the bytes in reverse order. As this header encodes the number of liter-
als and temporaries as well as a special method flag, mere chance dic-
tated whether the byte-reversed header would affect the execution of
the method. The final system avoids this problem by having primitives
for compiled method creation and manipulation.

A fascinating problem cropped up when we ran the Arc example pro-
vided with the third release image. The system mysteriously went into
an infinite loop and eventually ran out of object table space through
the activation of thousands of contexts! By tracing the execution of the
interpreter and looking at the Smalltalk source code, we were able to
determine the cause of the infinite loop. The method for the Arc exam-
ple included the following

anArc — Arc new.

Since Arc class did not understand the message new, it defaulted to the
new message understood by Path class, the superclass of Arc class. The
method for new in Path class contained the statement

tsuper new initializeCollectionOfPoints.

Following the superclass chain, we made the transition from the
metaclass to the class hierarchy by passing through Object class into
Class and eventually ended up in Behavior. Here the method new had a
primitive associated with it. However, since the receiver was an
indexable object, the primitive failed and invoked the backup Smalltalk
code which included

self isVariable ifTrue: [Tself new: 0].

o wormmm—

103

Development Environment

Since self was Arc class, we now followed a similar path starting at Arc
class looking for a new: message. Again we found it in Path class, and
the associated method contained

tsuper new initializeCollectionOfPoints: aninteger.

The infinite loop now begins, since we were again looking for the new
method in the superclass of Path class and so on. This switching back
and forth between new and new: continues until memory is exhausted.
The final image release avoids this problem by having the new and new:
methods in Path class use basicNew instead of new. The method for
basicNew in Behavior has backup Smalltalk code which uses basicNew:
instead of new:. Since Path class does not understand the basicNew:
message, the basicNew: message in class Behavior is executed and it
succeeds, avoiding the infinite loop.

We had problems in making the transition of our system from one
release of a Xerox Smalltalk image to the next. These problems were
generally minor, although annoying. The most extensive changes oc-
curred in going from the first image to the second. In general, there
were differences in some class Oops, and sometimes the structures of
some objects changed. Unfortunately, in most cases we had to discover
these differences ourselves. These should not be problems for future
implementors since the documentation has been rewritten and there
will be only one Smalltalk image to deal with. This image is the fifth or
final one referred to herein.

Development
Environment

An extensive collection of development tools complements the
Smalltalk system at Hewlett-Packard. These tools compose our software
development environment, which consists of the following layers:

1. The Smalltalk-80 system with its debugger.

2. The Smalltalk-80 virtual machine execution monitor and object
memory inspector.

3. The UNIX operating system?, SCCS version controller, make sys-
tem builder, sdb symbolic debugger, and prof execution profiler.

These levels offer access to different aspects of execution. For example,
we have the capability of setting breakpoints at the Smalltalk-80 state-
ment level (Smalltalk debugger), the Smalltalk-80 virtual machine
bytecode level (Smalltalk-80 virtual machine monitor), or the C source
level (sdb). Often we use all three mechanisms to attack a problem from

104

The Smalltalk-80 Implementation at Hewlett-Packard

Figure 6.1

each particular level of detail. The same goes for performance evalua-
tion as we have the capability to tap in at any level to spy on the activi-
ties of the system.

We structured the first level of our development environment using
the hierarchical file system of UNIX. A read-only copy of the latest sta-
ble version of the system is in a source directory, and each of the proj-
ect members owns a subdirectory under it. Each member can modify,
test, and debug sections of code in his subdirectory without affecting the
other members who may also be debugging. This feature was made pos-
sible by the UNIX make facility for creating, maintaining, and install-
ing software. Someone working in a subdirectory who wants to put
together a system using some changed source files simply asks make to
build it. Make determines whether any source needs to be recompiled,
and then loads the new code from the subdirectory and the rest from
the source directory. Duplication is minimal as there is only one copy of
the master source plus those pieces that people are working on in their
subdirectories.

The Source Code Control System (SCCS) was our primary tool for
dealing with version management issues. Whenever one wants to make
a change to a piece of the system, one asks SCCS for a modifiable copy
of the latest version. If no one else has a copy out, SCCS acquiesces and
places the copy in the subdirectory. After successful testing of the modi-
fications, one sends the modified copy back to SCCS and informs the
system version manager of the change. The version manager asks SCCS
to place a read-only copy of the new files into the source directory, and
then gets make to build a new system. It is important that only well
tested modifications make it to the source directory since all of the
work in the subdirectories depends on the stability of that code. Fig. 6.1
depicts an execution monitor command menu, and Fig. 6.2 shows an ex-
ecution monitor chain of context display.

type ?? for the list of commands

>> ?7?

> >

System multiple step ms, single step ss, continue cs, run rs
display state ds, update freq us, breakpoint bs, trace ts

Image load li, inspect ii, save si

Graphics reset rg, print pg

Other monitor mc, statistics sc, context chain cc, receiver update ru

Window Help wh, Banner wb, Inspector wi, Smalltalk ws
Context wc, Receiver wr, Method wm

Keys 1C interrupt, 1V quote, 1X break, 1Z suspend, 1\ core dump
T upArrow, « leftArrow, 1T ifTrue:, 1F ifFalse:, 11 control
ESC select, DEL delete, 'W deleteWord, 11[0-9] fonts

** default radix is Decimal - prefix with O for Octal, Ox for Hex

** Shell sh * Help ?? * Exit qq

105

Development Environment

context class method receiver class
7c3a 16 T2cc 238a la <Point>
7c06 16 552e 8aa 66a <InputSensor >
7c3e 16 232¢ 7908 3ef4 <StringHolderController >
7d32 16 4bae 7908 3ef4 <StringHolderController >
7cf6 16 650 7908 3ef4 <StringHolderController >
7c74 16 660 7908 3ef4 <StringHolderController >
7abe 16 632 7932 11f0 <StandardSystemController >
7cb2 16 648 7932 11f0 <StandardSystemController >
7d10 16 lae8 7932 11f0 <StandardSystemController >
7c96 16 650 7932 11f0 <StandardSystemController >
Tcae 16 660 7932 11f0 <StandardSystemController >
7d5¢ 18 5606 7d6e 16 <MethodContext >
7918 18 784 798¢ 16 <MethodContext >

Figure 6.2 active process: 7c40 priority = 4

Central to the multi-level environment is the Smalltalk-80 virtual ma-
chine execution monitor (Fig. 6.1), a runtime facility offering the follow-
ing services:

1. Transfer Smalltalk-80 images between object memory and the
UNIX file system.

2. Variable step and run modes for the Smalltalk-80 virtual machine
interpreter.

. Manipulate Smalltalk-80 virtual machine-level breakpoints.

. Display the current state of the Smalltalk-80 virtual machine.
. Trace the chain of method and block contexts, as in Fig. 6.2.

. Print the contents of the display bit map on a hardcopy device.

. Enable Smalltalk-80 virtual machine functional tracing.

® T3 O O e W

. Invoke the object memory inspector.

In Fig. 6.3, a memory inspector subsystem command menu is presented.
The last capability link